В.В. Александров, В.И. Самулеев, М.М. Тылес $\Phi FOV B\Pi O \ll B\Gamma ABT \gg$

ПРОЕКТИРОВАНИЕ ВТОРИЧНЫХ ИСТОЧНИКОВ ПИТАНИЯ НА ЭВМ

Для эффективного использования объема, который будет занимать ИВЭП, силовую часть ИПН строим в виде сдвоенного импульсного преобразователя, состоящего из двух однотактных ИПН с «прямым» преобразованием энергии (ОИПН).

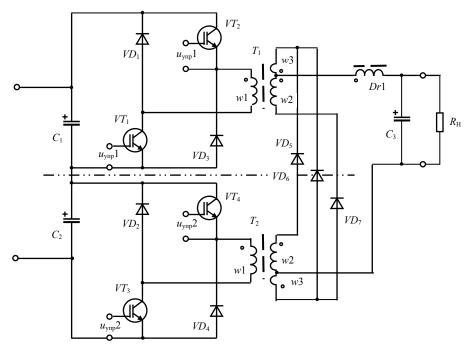


Рис. 1. Упрощенная схема сдвоенного ИПН с общим выходным фильтром

Упрощенная схема сдвоенного ИПН приведена на рис. 1, где пунктирная линия разделяет схему на два ОИПН. Верхнюю часть будем условно называть первым ОИПН, а нижнюю - вторым. Питание двух ОИПН осуществляется постоянными напряжениями (порядка 250 В), снимаемыми с двух конденсаторов C_1 и C_2 , включенными на выходе первичного трехфазного мостового выпрямителя. Каждый ОИПН содержит силовой импульсный трансформатор (СИТ) – T_1 или T_2 , первичная обмотка w1которого с помощью транзисторных ключей периодически (с частотой более 30 кГц) подключается к выходу трехфазного мостового выпрямителя (конденсатор C_1 или C_2). Первичные цепи ОИПН строим по схеме «косого полумоста», образованного в первом ОИПН транзисторами VT_1 , VT_2 и диодами VD_1 , VD_2 . В такой схеме облегчается реализация размагничивания сердечника СИТ в интервалы времени, когда транзисторные ключи заперты, и вдвое уменьшаются предельные напряжения на транзисторах. Вторичную цепь первого ОИПН образуют: вторичная обмотка w2 СИТ T_I , выпрямитель (на диоде VD_7) последовательностей высокочастотных импульсов и. накопительные элементы (дроссель Dr_1 и конденсатор C_3) общего для обоих ОИПН сглаживающего выходного фильтра. Вторичную цепь второго ОИПН образуют: вторичная обмотка w2 СИТ T_2 , выпрямитель (на диоде VD_5) последовательностей высокочастотных импульсов и. накопительные элементы (дроссель Dr_1 и конденсатор C_3) общего для обоих ОИПН сглаживающего выходного фильтра.

Кроме отмеченных обмоток (первичной и вторичной), каждый СИТ имеет дополнительную обмотку *w*3 (один или два витка), которая позволяет осуществлять двустороннее перемагничивание сердечника. Это увеличивает перепад индукции в сердечнике СИТ и, следовательно, среднюю магнитную проницаемость, что уменьшает габариты и вес трансформатора.

Работа сдвоенного ИПН происходит следующим образом. Полагаем, что в преобразователе прошло достаточно много времени после первого включения, и в цепях установилось динамическое равновесие. Тогда процессы будут периодически (T=1/f)

повторяться. На рис. 2 приведены временные диаграммы, на которых показаны импульсы управления транзисторами VT_1 , VT_2 первого ОИПН (рис. 2,a) и транзисторами VT_3 , VT_4 второго ОИПН (рис. 2, δ). Видим, что импульсы первой группы сдвинуты во времени по отношению к импульсам второй группы на половину периода T. Применяется широтно-импульсная модуляция посредством изменения положения (сдвига) среза управляющих импульсов. Это показано на рисунках стрелками. На рис. 2,a0 показано изменение тока через дроссель Dr_1 , а на рис. 2,a0 — изменение напряжения на конденсаторе C_3 1, то есть на выходе сдвоенного ИПН.

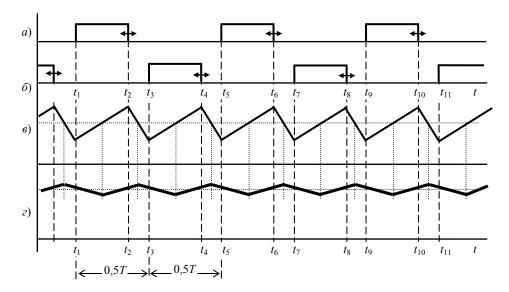


Рис. 2. Временные диаграммы процессов в сдвоенном ИПН

Пусть в момент t_1 на транзисторы VT_1 , VT_2 первого ОИПН подаются положительные импульсы и транзисторы одновременно открываются (транзисторные ключи замыкаются). Тогда в первичной цепи первого ОИПН ток потечет по цепи: положительный вывод конденсатора C_1 , коллектор-эмиттер транзистора VT_2 , от начала (на схеме помечено кружком) к концу первичной обмотки w1 СИТ T_1 , коллектор-эмиттер транзистора VT_1 , отрицательный вывод конденсатора C_1 . При этом на вторичной обмотке w2 СИТ T_1 возникнет напряжение положительной полярности («плюс» у начала обмотки), и ток во вторичной цепи (ток дросселя Dr_1) потечет по следующему пути: начало обмотки w2, обмотка дросселя Dr_1 , затем по двум параллельным путям (через конденсатор C_3 и через активную нагрузку), далее от конца к началу дополнительной обмотки w3 СИТ T_2 , через диод VD_7 к концу вторичной обмотки w2 СИТ T_1 . Таким образом, на интервале времени от момента t_1 до момента t_2 осуществляется «прямая» передача энергии от источника через СИТ T_1 в нагрузку $R_{\rm H}$. При этом часть энергии накапливается в магнитном поле дросселя Dr_1 , так как ток дросселя возрастает (см. рис. 2,e) и в электрическом поле конденсатора C_3 (напряжение в конце интервала

увеличивается, рис. 2,z). В течение данного интервала происходит намагничивание сердечника СИТ T_1 , рабочая точка, характеризующая магнитное состояние, поднимается вверх по восходящей ветви цикла намагничивания и к моменту t_2 достигает точки с координатами $B=B_{\rm makc}$; $H=H_{\rm makc}$.

Следует сделать замечание о влиянии дополнительной обмотки w3 СИТ T_2 . В рассмотренном интервале транзисторы VT_3 , VT_4 второго ОИПН заперты. Полагаем, что к моменту t_1 завершено размагничивание сердечника СИТ T_2 . Поэтому ток, протекающий в интервале $(t_1;t_2)$ по обмотке w3 СИТ T_2 от конца к началу, будет осуществлять намагничивание сердечника в сторону отрицательных значений индукции, то есть двустороннее перемагничивание. Поскольку ток $i_{\rm дp}$ значительно превышает намагничивающий ток при одновременной работе первичной и вторичной обмоток, перемагничивание в отрицательную область будет большим и для этого достаточно одногодвух витков в обмотке w3.

В интервале времени $(t_2; t_3)$ все транзисторы заперты (см. рис. 2,a и δ). В первичной цепи первого ОИПН ток протекает за счет энергии, оставшейся в сердечнике СИТ T_1 в момент t_2 запирания транзисторов. Поэтому в момент t_2 на первичной обмотке w1 СИТ T_1 возникает ЭДС индукции отрицательной полярности («плюс» на конце обмотки w1), превышающая напряжение источника (напряжение на конденсаторе C_1). Ток протекает по пути: конец обмотки w1, диод VD_1 , положительный вывод конденсатора C_1 , конденсатор C_1 , отрицательный вывод конденсатора C_1 , диод VD_2 , начало обмотки w1. За счет протекания этого тока энергия из сердечника СИТ T_1 перекачивается в конденсатор C_1 . Рабочая точка на характеристиках намагничивания перемещается по нисходящей части траектории к точке, соответствующей остаточной индукции частного цикла перемагничивания.

Проектирование источников питания на ЭВМ обычно начинают с силовой части – импульсного преобразователя напряжения. Для того, чтобы приступить к проектированию достаточно знать требования технического задания и выбрать тип ИПН. Далее с помощью программы OPTN определяются параметры элементов выходного фильтра ИПН по критерию минимальных габаритов и массы при моделировании динамических процессов и одновременном анализе качества этих процессов. Контролируется обеспечение допустимых величин выбросов выходного напряжения и тока через ключевые элементы. Исследуется целесообразность использования в ИПН «мягкого пуска», определяются временные характеристики системы. На втором этапе с помощью комплекта программ TRANDR осуществляется конструктивный расчет тороидальных импульсных трансформаторов и дросселей.

Б.Ю. Алтунин, А.А. Кралин, В.В. Гуляев НГТУ им. Р.Е. Алексеева ФБОУ ВПО «ВГАВТ»

МОДЕЛИРОВАНИЕ НЕЛИНЕЙНОГО ТРЕХФАЗНОГО ТРЕХСТЕРЖНЕВОГО ТРАНСФОРМАТОРА В ПАКЕТЕ SIMULINK

Исследование несимметричных режимов работы трансформаторов с РПН целесообразно осуществлять с помощью компьютерного моделирования с использованием мощных современных программных средств, таких как Matlab со встроенным пакетом визуального моделирования Simulink.

В ходе выполнения научной работы была создана нелинейная модель трехфазного