увеличивается, рис. 2,*г*). В течение данного интервала происходит намагничивание сердечника СИТ T_1 , рабочая точка, характеризующая магнитное состояние, поднимается вверх по восходящей ветви цикла намагничивания и к моменту t_2 достигает точки с координатами $B = B_{\text{макс}}$; $H = H_{\text{макс}}$.

Следует сделать замечание о влиянии дополнительной обмотки w3 СИТ T_2 . В рассмотренном интервале транзисторы VT_3 , VT_4 второго ОИПН заперты. Полагаем, что к моменту t_1 завершено размагничивание сердечника СИТ T_2 . Поэтому ток, протекающий в интервале (t_1 ; t_2) по обмотке w3 СИТ T_2 от конца к началу, будет осуществлять намагничивание сердечника в сторону отрицательных значений индукции, то есть двустороннее перемагничивание. Поскольку ток $i_{\rm дp}$ значительно превышает намагничивающий ток при одновременной работе первичной и вторичной обмоток, перемагничивание в отрицательную область будет большим и для этого достаточно одного– двух витков в обмотке w3.

В интервале времени $(t_2; t_3)$ все транзисторы заперты (см. рис. 2,*a* и б). В первичной цепи первого ОИПН ток протекает за счет энергии, оставшейся в сердечнике СИТ T_1 в момент t_2 запирания транзисторов. Поэтому в момент t_2 на первичной обмотке w1 СИТ T_1 возникает ЭДС индукции отрицательной полярности («плюс» на конце обмотки w1), превышающая напряжение источника (напряжение на конденсаторе C_1). Ток протекает по пути: конец обмотки w1, диод VD_1 , положительный вывод конденсатора C_1 , конденсатор C_1 , отрицательный вывод конденсатора C_1 , диод VD_2 , начало обмотки w1. За счет протекания этого тока энергия из сердечника СИТ T_1 перекачивается в конденсатор C_1 . Рабочая точка на характеристиках намагничивания перемещается по нисходящей части траектории к точке, соответствующей остаточной индукции частного цикла перемагничивания.

Проектирование источников питания на ЭВМ обычно начинают с силовой части – импульсного преобразователя напряжения. Для того, чтобы приступить к проектированию достаточно знать требования технического задания и выбрать тип ИПН. Далее с помощью программы ОРТN определяются параметры элементов выходного фильтра ИПН по критерию минимальных габаритов и массы при моделировании динамических процессов и одновременном анализе качества этих процессов. Контролируется обеспечение допустимых величин выбросов выходного напряжения и тока через ключевые элементы. Исследуется целесообразность использования в ИПН «мягкого пуска», определяются временные характеристики системы. На втором этапе с помощью комплекта программ TRANDR осуществляется конструктивный расчет тороидальных импульсных трансформаторов и дросселей.

Б.Ю. Алтунин, А.А. Кралин, В.В. Гуляев НГТУ им. Р.Е. Алексеева ФБОУ ВПО «ВГАВТ»

МОДЕЛИРОВАНИЕ НЕЛИНЕЙНОГО ТРЕХФАЗНОГО ТРЕХСТЕРЖНЕВОГО ТРАНСФОРМАТОРА В ПАКЕТЕ SIMULINK

Исследование несимметричных режимов работы трансформаторов с РПН целесообразно осуществлять с помощью компьютерного моделирования с использованием мощных современных программных средств, таких как Matlab со встроенным пакетом визуального моделирования Simulink.

В ходе выполнения научной работы была создана нелинейная модель трехфазного

трехстержневого многообмоточного трансформатора с плоской магнитной системой в программе Matlab Simulink.

Схема замещения (рис. 1) состоит из следующих элементов ($w_1i_1 - w_xi_x$), ($w_2i_2 - w_yi_y$), ($w_3i_3 - w_zi_z$) – намагничивающие силы обмоток на стержнях магнитопровода; ($\Phi_A - \Phi_C$) соответственно магнитные потоки фаз; $H_A l_A \div H_C l_C$; $H_{AA} l_A \div H_{AC} l_A$ – падения магнитных напряжений на ферромагнитных участках (стержень, ярмо) от потока этих участков, $H_0 l_0$ – падение магнитного напряжения от потока нулевой последовательности.

В соответствии с приведенной схемой замещения уравнения магнитного состояния трехфазного многообмоточного трансформатора, будут иметь следующий вид:

$$w_1i_1+w_4i_4+...+w_xi_x - H_Al_A - H_{AA}l_A - H_0l_0=0;$$

 $w_2i_2+w_5i_5+...w_yi_y - H_Bl_B - H_0l_0=0;$
 $w_3i_3+w_6i_6+...+w_zi_z - H_Cl_C - H_{BC}l_B - H_0l_0=0;$

Величина потока нулевой последовательности:

$$\Phi_A + \Phi_B + \Phi_C = \Phi_0.$$

Магнитные потери учитываются с помощью активных сопротивлений включенных параллельно соответствующим обмоткам.

Нелинейные свойства материала магнитопровода учитываются с помощью кусочно-линейной интерполяции заданной табличной функции основной кривой намагничивания высоколегированной холоднокатаной анизотропной стали 3413.

Рис. 1. Схема замещения магнитной цепи трехстержневого многообмоточного трансформатора с контуром замыкания потоков нулевой последовательности

В дополнение к системе нелинейных алгебраических уравнений составлена модель электрической системы (обмоток) трансформатора по следующим выражениям:

$$U_{1} = L_{S1.1} \frac{di_{1}}{dt} + w_{1} \frac{d\Phi_{A}}{dt} + R_{1}i_{1};$$

$$U_{2} = L_{S2.2} \frac{di_{2}}{dt} + w_{2} \frac{d\Phi_{2}}{dt} + R_{2}i_{2};$$

$$U_{Y} = L_{SY.Y} \frac{di_{Y}}{dt} + w_{Y} \frac{d\Phi_{Y}}{dt} + R_{Y}i_{Y};$$

где *U_n* – напряжение соответствующей обмотки; 266 $L_{Sm,m}$ – собственные индуктивности рассеяния обмоток;

 R_n – активные сопротивления обмоток;

w_n – число витков обмоток.

В качестве параметров модели трансформатора используются данные трансформатора TM 400 -10/0,4 Y/Y-0:

- потери холостого хода $P_0=950$ Вт,
- потери короткого замыкания P_k =5500 Вт,
- -ток холостого хода $I_0=2,1\%$,
- напряжение короткого замыкания U_{K} =4,5%.

Адекватность модели проверялась по данным опытов холостого хода и короткого замыкания. В процессе моделирования установлено, что при завершении переходного процесса включения ненагруженного трансформатора мощность потерь холостого хода составляет 860 Вт (рис. 2), что меньше заявленных каталожных потерь на 4,5%. Мощность потерь короткого замыкания составляет 5500 Вт. Отличие от каталожных данных составляет 0,9%.

Разработанная модель трансформатора может быть использована для исследования устройств, содержащих в своем составе трехфазные многообмоточные трансформаторы со стержневой конструкцией магнитопровода, в том числе трансформаторов с РПН, предназначенных для регулирования параметров электроэнергии. Модель позволяет исследовать важнейшие энергетические показатели трансформаторов с РПН с различными группами соединения обмоток в динамических и статических режимах работы при симметричной и несимметричной нагрузках. Модель реализует следующие функции: отображение переходных электромагнитных величин, таких как ток, напряжение, магнитная индукции, магнитный поток трансформатора, что позволяет измерять основные характеристики трехфазных трансформаторов в режимах холостого хода, короткого замыкания и под нагрузкой. В динамических режимах модель позволяет исследовать режимы внезапного короткого замыкания (рис. 3) и подключения трансформатора к трехфазной сети.

Рис. 2. Зависимость потерь холостого хода от напряжения

Секция XVII. Эксплуатация электрооборудования объектов водного транспорта

Рис. 3. Действующие значения фазных токов симметричного трехфазного КЗ.

Е.М. Бурда ФБОУ ВПО «ВГАВТ»

ЧАСТОТНО-РЕГУЛИРУЕМЫЙ ЭЛЕКТРОПРИВОД ГРЕБНОЙ УСТАНОВКИ ПАССАЖИРСКОГО СУДНА «СУРА»

В 2009 г. на Городецком судоремонтном заводе было начато строительство мелкосидящего пассажирского колесного судна ПКС 40 «Сура». Это судно должно было решить ряд задач повышения эффективности речных судов и приспособить их к естественным условиям – уменьшить осадку судов, оптимизировать размеры, повысить маневренные качества, обеспечить возможность работы без причальных сооружений и при этом снизить удельные показатели мощности энергетической установки.

В 2011 г. строительство завершилось, а в 2012 г. судно вышло в первую навигацию, получив класс по Правилам Российского Речного Регистра « Р» с индексом «Э» (экспериментальное).

В процессе строительства судна произошли существенные отклонения ряда параметров судна от проектных и расчетных.

Главные размерения и основные характеристики ПКС 40 «Сура»:

	Проект	Факт
Длина габаритная, м	34,0	
Длина по КВЛ, м	24,0	25,0
Ширина габаритная, м	10,8	
Ширина по КВЛ, м	10,3	