Д.А. Борисов, В.И. Плющаев
ФБОУ ВПО «ВГАВТ»
А.Ю. Нуждин
Информцентр филиала ФБУ «Волжское ГБУ»

РЕАЛИЗАЦИЯ СУДОВОЙ СИСТЕМЫ ОХРАННОГО ОПОВЕЩЕНИЯ ДЛЯ РЕЧНЫХ СУДОВ НА БАЗЕ АИС

Рассматривается возможность реализации судовой системы охранного оповещения на базе АИС. Приведена структура системы и алгоритм ее функционирования.

Конференция ИМО в декабре 2002 г. приняла решение об обязательном оснащении всех судов системами охранного оповещения (CCOOSSAS). Эти системы должны соответствовать требованиям SOLAS XI-2/6 и ISPS части A,B. Все суда, занятые международными перевозками с середины 2004 г. должны быть оснащены системами охранного оповещения на случай террористического, пиратского или иного нападения на судно.

ССО после активации должна:

- передавать с судна на берег сигнал тревоги до момента его принудительного сброса;
 - не посылать сигнал об опасности другим судам и не поднимать тревогу на судне;
- иметь возможность активации, как с мостика, так и из других мест на судне (при этом организационно должна быть исключена возможность активации системы при отсутствии реальной угрозы) [1,2].

Из используемого на судах оборудования ГМССБ, по техническим и экономическим причинам, наиболее подходящими для использования в качестве радиоустановок ССОО оказались судовые станции Инмарсат. Станции Инмарсат удовлетворяют большинству требований к ССОО (при передаче сигнала тревоги не требуется предварительная настройка каналов, установка режимов работы, выполнено требование по электропитанию от альтернативного источника электроэнергии, обеспечивается передача данных о местоположении судна с привязкой к дате и времени, глобальный режим работы и т.д.).

В настоящее время различные фирмы выпускают для судов морского флота ряд ССОО на базе станций Инмарсат. Примером может служить ССОО «Сигнал-ССО (ГМССБ)», построенная на базе судовой земной ГМССБ станции Инмарсат-С типа ТТ-3020С (или одного из ее аналогов)[3]. Стандартная конфигурация судовой земной станции дополняется специализированным контроллером, предназначенным для формирования текста сообщений об угрозе безопасности судна и тестового сообщения, двумя кнопками активации сигнала и кнопкой режима тестирования. Система обеспечивает «прозрачный» канал обмена информацией между терминалом и приемопередатчиком в штатном режиме работы спутниковой станции (рис. 1).

Проблема охранного оповещения остается открытой для речных судов. Подавляющая часть речных судов не оборудована земными станциями Инмарсат и их оснащение ССОО, выполненных на базе станций Инмарсат, является весьма дорогостоящим предприятием.

В настоящее время в рамках работ «АИС на ВВП» в Российской Федерации ведётся оснащение судов и внутренних водных путей береговыми базовыми станциями автоматической идентификационной системы (АИС), которое приведет к формированию единого поля АИС на ЕГС ВВП и позволит решить задачу создания системы мониторинга судов на ВВП. Диспетчерские пункты (оснащенные АИС) будут иметь возможность создавать единую базу данных по статической, динамической и рейсовой информации, автоматически передаваемой АИСами судов (ММSI номер судна, название судна, навигационный статус судна, скорость и направление поворота судна,

скорость относительно грунта, путевой угол, истинный курс, время UTC, тип груза, размер судна, время прибытия, осадка судна и пр.), со всех находящихся в зоне действия станций судов.

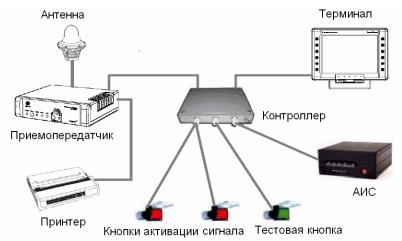


Рис. 1. ССОО «Сигнал-ССО (ГМССБ)»

Решить проблему охранного оповещения для речных судов можно за счет передачи оповещения в береговые центры по каналам связи АИС. Для этого необходимо к судовой АИС подключить по линии RS-422 контроллер с набором тревожных кнопок (рис. 2). Система работает следующим образом.

Береговая станция периодически излучает сообщение №4. Стандартный интервал сообщения составляет 10 с. Интервал сокращается до 3 1/3 с в случае назначения береговой станции источником синхронизации для других станций. Сообщение №4 содержит номер опознавателя морской подвижной службы (MMSI) береговой станции, ее координаты и время передачи текущего слота (в котором передается сообщение №4), привязанного к секундной метке шкалы времени UTC.

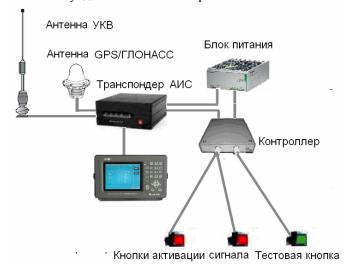


Рис. 2. ССОО на базе судовой АИС

Судовая АИС передает и принимает сообщения береговых и судовых станций, на порт ввода/вывода АИС выдается нотификации о каждом УКВ-сообщении, принятом и переданном по каналам АИС, полностью содержащие в себе УКВ-сообщения. К

этому порту ввода /вывода подключен контроллер. При входе судна в зону действия береговой станции, судовая АИС периодически начинает принимать, в числе прочих, и сообщение №4 береговой станции. Контроллер, получив данное сообщение через порт ввода/вывода АИС, выделяет из него MMSI береговой станции.

При активации тревожной кнопки АИС передает сообщение по безопасности №12:

Параметр	Количество бит	Описание	
Идентификатор со- общения	6	Всегда 12	
Индикатор повтор- ной передачи	2	Используется ретранслятором для обозначения числа повторений	Неизменная часть в ПЗУ
Собственный иден- тификатор	30	Номер MMSI судовой станции	контроллера
Порядковый номер	2	От 0 до 3	
Идентификатор вызываемой станции	30	Номер MMSI береговой станции, в зоне действия которой находит- ся судно	Переменная часть – MMSI из со- общения №4 бе- реговой станции
Флаг ретрансляции	1	0 – нет ретрансляции 1 – ретранслированное сообщение	Неизменная часть в ПЗУ
Резерв	1		
Текст сообщения	Макси- мально 936		контроллера
Общее количество бит	До 1008	Занимает от 1 до 5 слотов	

Для этого контроллер формирует и передает в АИС по каналу RS-422 формат предложения ABM:

- 1 число предложений, необходимых для передачи сообщения (для ССОО достаточно одного 1. Предложение может содержать 48 шестибитовых символов (288 бит));
 - 2 номер предложения (для CCOO 1);
 - 3 определитель последующего сообщения;
 - 4 MMSI береговой станции (подставляется контроллером из сообщения №4);
 - 5 канал АИС для передачи (для ССОО 3, передача на каналах А и В);
 - 6 идентификатор предложения (для ССОО 12);
 - 7 число бит в поле данных (для ССОО -288);
 - 8 число бит дополнения;
 - 9 контрольная сумма;
 - 10 -возврат каретки;
 - 11 ограничитель конца последовательности.

При получении предложения ABM AИС начинает передачу по УКВ каналу сообщения №12. Может осуществляться до 4 повторов. Действительное число попыток будет зависеть от получения подтверждения приема от береговой станции (сообщение №13). Общее время передачи и получения подтверждения может составлять 32 с. Принятый береговой станцией сигнал охранного оповещение поступает на сервер обработки данных и далее транслируется уполномоченным властям.

При тестировании ССОО также формируется сообщение №12, но с другим текстом (например, «ТЕСТ»). Получение подтверждения от береговой станции в виде сообщения №13 будет указывать на работоспособность системы.

Таким образом дооснащение судовой АИС простым и недорогим контроллером позволит решить проблему создания ССОО для речных судов.

Список литературы:

- [1] Резолюции Международной морской организации (ИМО) MSC. 136(76) от 11 декабря 2002 г., с поправками, внесенными резолюцией ИМО MSC. 147(77) от 29 мая 2003 г.
- [2] Руководства по обеспечению судовой системы охранного оповещения, принятого Комитетом по безопасности на море ИМО на 77-й сессии (MSC/Circ.1072 от 26 июня 2003 г.).
- [3] Судовая система охранного оповещения «ССОО «Сигнал-ССО (ГМССБ)». ЗАО «МВС Глобальные телекоммуникации», Россия, Москва.

${\it Д.A.}$ Борисов, С.В. Перевезенцев, В.И. Плющаев ${\it \Phi EOV B\Pi O}$ «ВГАВТ»

РАЗРАБОТКА ИНТЕРФЕЙСА ПЕРЕДАЧИ ДАННЫХ С СУДНА НА БЕРЕГ С ИСПОЛЬЗОВАНИЕМ КАНАЛОВ АИС

В статье рассмотрен вариант реализация интерфейса для обмена информацией между судами и диспетчерскими пунктами по каналам АИС.

При создании судовых систем мониторинга с использованием каналов АИС на ВВП важной задачей является определение объема передаваемой информации с судов в диспетчерские пункты (и далее судовладельцам) и обоснование формата передаваемых ланных.

Передаваемые данные с судна можно разделить на четыре основных класса (рис. 1):

- данные по обеспечению безопасности и организации движения;
- технологические данные о судовых системах и механизмах;
- данные для судоходных компаний;
- текстовые сообщения.

Рис. 1. Структура информационного обеспечения систем мониторинга

Данные по обеспечению безопасности и организации движения определяются регламентирующими и нормативными документами.

Технологические данные — параметры, характеризующие состояние судовых систем, механизмов, корпуса и т.п. Эти данные формируются автоматически судовыми системами контроля и диагностики (системой контроля расхода топлива, системой контроля состояния корпуса судна и др.) и в автоматическом режиме с заданным интервалом передаются в береговые диспетчерские пункты, далее — судовладельцам.