К.Н. Пряничников ФБОУ ВПО «ВГАВТ»

ОПЫТ ПРИМЕНЕНИЯ SCAD OFFICE В РАСЧЕТАХ ГИДРОТЕХНИЧЕСКИХ СООРУЖЕНИЙ

Основные положения расчета бетонных и железобетонных конструкций гидротехнических сооружений приведены в СНиП 2.06.08-87 [1], примеры расчета – в Пособии по проектированию бетонных и железобетонных конструкций гидротехнических сооружений [2].

Расчет конструкций выполняется при упругой работе бетона по предельным состояниям первой и второй групп. Железобетонные конструкции следует рассчитывать

- по предельным состояниям первой группы:
- на прочность с проверкой устойчивости положения и формы конструкции, на выносливость при многократно повторяющейся нагрузке;
 - по предельным состояниям второй группы:
 - по образованию трещин или по ограничению величины их раскрытия;
 - по деформациям.

Железобетонные конструкции должны удовлетворять требованиям по предельным состояниям первой группы при всех сочетаниях нагрузок и воздействий, а по предельным состояниям второй группы — только при основном сочетании нагрузок и воздействий. Расчеты по предельным состояниям следует производить для всех стадий возведения, транспортировки, монтажа и эксплуатации конструкций.

Ниже приведен пример расчета и проектирования железобетонной док-камеры, служащей для передачи тяжеловесных грузов массой 1000 т с речных судов на железнодорожный транспорт. Определение напряженно-деформированного состояния и армирования док-камеры возможно при использовании вычислительного комплекса SCAD OFFICE.

План и продольный разрез док-камеры приведен на рис. 1. Док-камера имеет следующие геометрические размеры:

```
длина — 133,5 м; ширина по внутренней грани стен — 21,5 м; ширина по наружным граням — 26,5 м; высота стены от верха плиты днища— 14,0 м; толщина стены по верху — 1,0 м; толщина стены по низу — 2,5 м; толщина днища — 2,4 м.
```

В состав несущей системы входит фундаментная плита, лежащая на упругом грунтовом основании, и вертикальные стены переменной толщины по высоте (сечения 1-1, 2-2 рис. 1). В процессе строительства выполняется водопонижение, и грунтовые воды отсутствуют. При входе баржи с грузом уровень воды соответствует отметке $+6,000\,$ м, при разгрузке баржи уровень воды соответствует отметке $+12,500\,$ м. Верх днищевой плиты имеет условную отметку $0,000\,$ м.

Док-камера выполнена из тяжелого бетона класса B20, рабочая арматура класса A400, поперечная и монтажная — A240. Грунт основания и засыпки — песок с объемным весом $\gamma = 19.8 \text{ кH/m}^3$, углом внутреннего трения $\varphi = 28^\circ$. Упругое грунтовое основание имеет коэффициенты постели $C_I = 42000 \text{ кH/m}^3$, $C_2 = 2700 \text{ кH/m}$, вычисленные при модуле деформации грунта $E = 30 \text{ M}\Pi a$, коэффициенте Пуассона v = 0.3.

Стены и днище док – камеры разделены на четыре конструктивных элемента. Конечно-элементная схема сечения 1-1 док-камеры (рис.2) представлена линейными конечными элементами единичной ширины

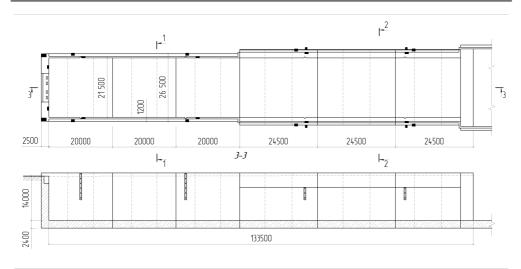


Рис. 1. План док-камеры и продольный разрез 3 – 3

(1,0 п.м.). Применяются следующие типы конечных элементов: тип $K\Im - 7$ «балка на упругом основании», обозначенные номерами №1-№4 в кружках с постоянной высотой сечения h=240 см, конечные элементы типа $K\Im - 2$ «плоская рама» с переменной высотой сечения (h=230,190,150,120 см).

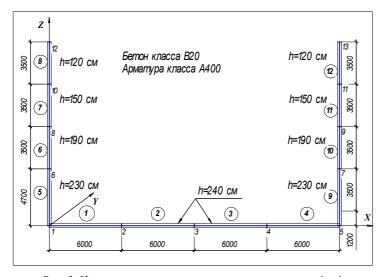


Рис. 2. Конечно-элементная расчетная схема сечения $1-1\,$

Расчетная схема имеет следующие загружения: первое— постоянными нагрузками от сил веса и активного давления грунта (рис. 3); второе— временная нагрузка от гидростатического давления воды при наиболее низком уровне +6,000 м (рис. 4); третье — временная нагрузка от гидростатического давления воды при наиболее высоком уровне +12,500 м (рис. 5).

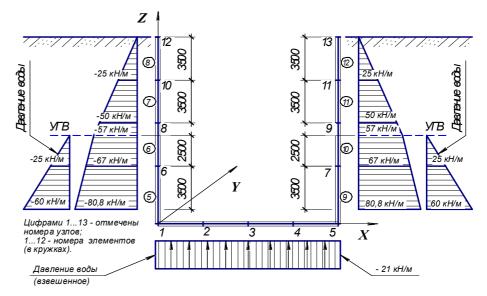


Рис. 3. Постоянные нагрузки от сил веса и активного давления грунта

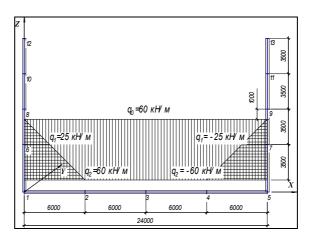


Рис. 4. Временная гидростатическая нагрузка при уровне воды +6,000 м

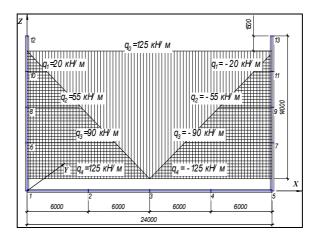


Рис. 5. Временная гидростатическая нагрузка при уровне воды +12,500 м

BK SCAD OFFICE позволяет выполнить статический расчет каждого загружения, расчетных сочетаний усилий при ограничении ширины раскрытия трещин $0,2\,$ мм. В результате расчета определяются внутренние усилия в стержневых элементах (кH, кHм): N – осевая сила, M – изгибающий момент, Q – поперечная сила и деформации для каждого загружения (фрагмент расчета приведен в табл. 1) и расчетных сочетаний усилий, а также расчетные площади рабочей арматуры AS1, AS2 (см²) при симметричном и несимметричном армировании (табл. 2)

 $\label{eq:2.1} {\it Таблица} \ {\it I}$ Расчетные усилия в конечных элементах по каждому загружению

	08 10:35:4							 В ЭЛЕМЕ	6.000				
				У С И 	лия 	/ папея:	кепия/	D 3)1EMB	=n:AA				
002_	1-	1-	1-	2-	2-	2-	3-	. 3-	- 3-	- 4-	- 4-	4-3	
	1	1	1	2	2	2	3	3	3	4	4	- 4-3 4 5	
	2	2	2	3	3	3	4	4	4	5	5	5	
м - Q - 2 - "Ниж м - Q "Вер	охний уров -4187. –36	54. –4 ень вод)0.7 –3).64 4 зень во 551. –2	25.8 -4 ы" 66.1 -3 4.02 4 Ды" 6702	25.8 -2 66.1 -2 4.02 2	05. 56.5 - 6.49 871	215.7 ·	-215.7 -1573.	205.1 -256.5 -26.49 -1871.	425.8 -366.1 -44.02 -2670.	425.8 -366.1 -44.02 -2670.	654. -500.7 -40.64 -3651.	833. -574.2	

+						:	РЕЗУ	льт	АТЫ	PAC	ЧЕТ	A						
	элем.	И сеч.	Тип	Площадь продольной арматуры (см.кв)								Ширина раскрытия трещины		Площадь поперечной арматуры, максимальный шаг хомутов				
Г				несимметричной симметричной							MIN	ű.	CM.KB	CM	CM.KB	CM		
Г				AS1	AS2	AS3	AS4	%	AS1	AS3	%	ACR1	ACR2	ASW1	Шаг	ASW2	Шаг	
Г																		
Г	Lb.	ЯΠΙ	IA ;	данні	ЫХ 1													
Г	МОД	ĮУЛΙ	APN	инрова	ния 1	(2D - пл	ский ст	ержень)										
	БЕТ			APMAT				400C	ПОПЕР	канра	A-I							
	Максимально допустимый диаметр 32 мм																	
				MOYTC				I=240.0 (см)									
L	Pacc	гоян	ие до	ц. т. арма		.1 = 8.0	A2 = 8.0											
L	1	1	Σ	85.8	24.4			0.47	84.7		0.73	0.18	0.18					
		2	Σ	28.0	28.0			0.24	28.0		0.24							
Г		3	Σ	28.0	28.0			0.24	28.0		0.24							
Г	2	1	Σ	28.0	28.0			0.24	28.0		0.24							
Г		2	Σ	24.4	30.1			0.23	30.1		0.26							
Г		3	Σ	24.4	30.2			0.24	30.2		0.26							
Г	3	1	Ξ	24.4	30.2			0.24	30.2		0.26							
Г		2	Ξ	24.4	30.1			0.23	30.1		0.26							
Г		3	Ξ	28.0	28.0			0.24	28.0		0.24							
	4	1	Ξ	28.0	28.0			0.24	28.0		0.24							
Н		2	Ξ	28.0	28.0			0.24	28.0		0.24							
			Ξ	85.8	24.4			0.47	84.7		0.73	0.18	0.18			_		

Вывод. Расчет док-камеры с использованием ВК SCAD OFFICE в отличие от ручного расчета имеет следующие преимущества:

- возможность выбора наиболее тяжелого сочетания нагрузок;
- учета непризматичности стен, влияния упругого основания, ширины раскрытия трещин.

Недостаток расчета – не учтена концентрация напряжений.

Список литературы:

[1] СНиП 2.06.08-87. Бетонные и железобетонные конструкции гидротехнических сооружений / Госстрой России. — М.: ГУП ЦПП, 2001. - 32 с.

[2] Пособие по проектированию бетонных и железобетонных конструкций гидротехнических сооружений (без предварительного напряжения) к СНиП 2.06.08-87/ Гидропроект им. С.Я. Жука, ВНИИГ им. Б.Е. Веденеева. — М.: ВНИИГ, 1991.-276 с.

Е.П. Роннов, В.В. Анисимова ФБОУ ВПО «ВГАВТ»

ОПТИМИЗАЦИЯ ОСНОВНЫХ ЭЛЕМЕНТОВ И ХАРАКТЕРИСТИК ОБСТАНОВОЧНЫХ СУДОВ ВНУТРЕННЕГО ПЛАВАНИЯ

Для разъездов бригады обстановочной службы по обслуживаемому участку водного пути в ее распоряжение предоставляется приспособленное для этой цели обстановочное судно. В процессе проектирования для каждого конкретного участка можно получить суда с различными вариантами главных размерений и характеристик. Среди них необходимо выделить теплоход с такими элементами и характеристиками, с которыми он наиболее эффективно выполнит все возложенные на него функции.

Задача может быть сформулирована в следующем виде: при известном векторе исходных данных Y найти компоненты вектора F(X,Y,Q) (X — совокупность варьируемых параметров; Q — совокупность определяемых главных элементов и характеристик обстановочного судна), при котором выполняемая за навигацию обязательная и дополнительная работа будет сделана с наибольшей экономической эффективностью, т.е. чтобы функция цели (критерий эффективности достигал экстремума [1]:

$$k_{opt} = f(Y, X, Q) \rightarrow \min(\max)$$
 (1)

При этом должны выполняться ограничения, определяемые условиями эксплуатации обстановочного судна, требованиями заказчика, нормативными документами, правилом Российского Речного Регистра, а также пределами изменений выражений, описывающих математическую модель судна. Ограничения накладываются в виде строгих равенств, или неравенств.

Примерами таких ограничений могут быть:

– условие выполнения всех видов обязательных работ по обслуживанию судоходной обстановки на всех закрепленных участках $i \in Y$

$$\sum_{i} \sum_{q} n_{i} \cdot Z_{qi} = \sum_{i} M_{i} \tag{2}$$

где n_i — количество знаков судоходной обстановки на i-ом закрепленном участке, обслуживаемом одним судном;

 Z_{qi} — количество судов q-го с характеристиками, соответствующими варьируемым параметрам X, работающих на i-ом участке.

 M_i – общее количество обслуживаемых знаков судоходной обстановки на i-ом закрепленном участке;