

ПРОБЛЕМЫ ИСПОЛЬЗОВАНИЯ И ИННОВАЦИОННОГО РАЗВИТИЯ ВНУТРЕННИХ ВОДНЫХ ПУТЕЙ В БАССЕЙНАХ ВЕЛИКИХ РЕК

Интернет журнал широкой научной тематики. Выпуск 5, 2016 г.

ISBN 978-5-901772-51-0

УДК 533.51

Курников А. С., проф., д.т.н., ФГБОУ ВО «ВГУВТ». **Шляхтин Д.Е.,** аспирант, ФГБОУ ВО «ВГУВТ» 603950, г. Нижний Новгород, ул. Нестерова, д.5

НЕКОТОРЫЕ ВЫВОДЫ ПО ИСПЫТАНИЯМ ЭЖЕКТОРА – КАВИТАТОРА

Ключевые слова :эжектор-кавитатор, камера смешения, корпус, сопло, кольца, втулка, шайба.

В статье представлена конструкция эжектора-кавитатора.

Одной из экологических проблем в нашей современности является перенос чужеродных видов живых организмов в другие части континента вместе с балластными водами судов. При попадании в новую среду обитания живые микроорганизмы быстро размножаются, нанося опустошительный урон экосистемам, местным экономикам и здоровью людей. В связи с этой проблемой Международная морская организация (ІМО) приняла Конвенцию о контроле судовых балластных вод ,осадков и операций с ними от 2004 года, в соответствии с которой в ближайшее время поэтапно будут внедрятся требования по очистке и обеззараживанию балластной воды.

Стандарт качества балластной воды включает в себя следующие показатели:

- токсикогенный вибрион холеры с менее чем 1 колониеобразующей единицей (кое) на 100 миллилитров или менее 1 кое на 1 грамм (сырого веса) образцов зоопланктона;
- кишечную палочку менее 250 кое на 100 миллилитров;
- кишечные энтерококки менее 100 кое на 100 миллилитров.

На кафедре ТКМ и МР была разработана принципиальная схема очистки балластных вод, одним из основных узлов которой является эжектор – кавитатор (Э-К). Опытный образец Э-К спроектирован и изготовлен в лаборатории металлорежущего оборудования ВГУВТ, но для оптимизации конструкции Э-К необходимо провести его экспериментальные исследования.

Оптимизация конструкции Э-К производиться по 4 факторам, к которым относятся:

- L расстояние между срезом сопла и входным отверстием камеры смешения,
- F₁/F_c Отношение площадей камеры смешения к выходному отверстию сопла, мм;
- Δp перепад давлений в Э-К, $\Delta p = p_1 p_2$, кПа;
- α угол атаки на выходе из колец диффузора.

Параметром оптимизации является давление в камере смешения р(у).

При проведении экспериментальных исследований мы используем основные положения теории планирования. Матрица планирования принимается типа 2^4 , позволяющая сократить количество опытов в 2 раза без ухудшения точности эксперимента. Сама матрица представлена в табл. 2 для э-к производительностью $1 \text{ м}^3/\text{ч}$.

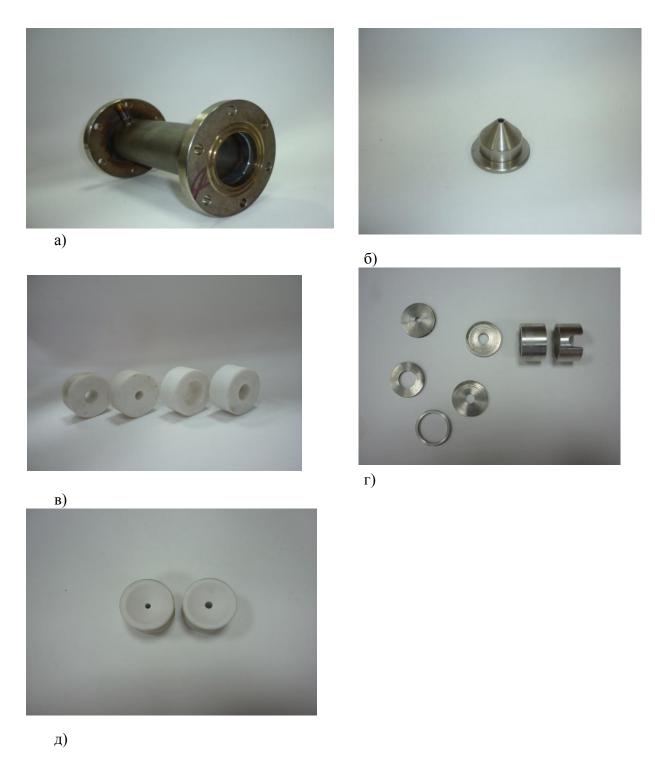


Рисунок 2 — Внешний вид конструктивных элементов Э-К: а) корпус; б) сопло; в) кольца ступеней; г) втулки и шайбы; д) камеры смешения.

Таблица 2 - Матрица планирования и результаты эксперимента типа 2^4

Факторы		L, мм	F ₁ /F _c	Δp (dP), кПа	Угол а	р (у), кПа	Количество сигнальных ламп кавитатометра
Номер опыта	1	-	-	-	-	-30	3
	2	-	-	+	-	-76	7
	3	-	-	-	+	+150	-
	4	-	-	+	+	+88,5	-
	5	-	+	-	-	-30	3
	6	-	+	+	-	-89	8
	7	-	+	-	+	-21	2
	8	-	+	+	+	-90,5	8
	9	+	+	-	+	-20	2
	10	+	+	+	+	-86	8
	11	+	-	-	+	+180	-
	12	+	-	+	+	+110	-
	13	+	+	-	-	-30	3
	14	+	+	+	-	-85	8
	15	+	-	-	-	+20	-
	16	+	-	+	-	-65	6

В данной таблице показаны минимальные и максимальные значения факторов при проведение определенного опыта.

По результатам, полученным после проведения эксперимента, видно, что при определенных сочетаниях факторов достигается минимальное давление в камере смешения. Это положительно сказывается на условия для создания эффективной кавитации.

В результате после математической обработки экспериментальных данных Э-К производительностью $1~{\rm m}^3/{\rm q}$ мы можем получить уравнение регрессии, описывающее влияние указанных факторов на параметр оптимизации.

Some of the findings of tests ejector - cavitator

Kurnikov A., prof., Ph.D., FSFEI HE"VSUWT". Shlyakhtin AE, graduate student, FSFEI HE"VSUWT".

Keywords: ejector - cavitator, a mixing chamber, the housing, the nozzle ring, bushing, washer.

The paper presents the design of the ejector - cavitator.