

# ПРОБЛЕМЫ ИСПОЛЬЗОВАНИЯ И ИННОВАЦИОННОГО РАЗВИТИЯ ВНУТРЕННИХ ВОЛНЫХ ПУТЕЙ В БАССЕЙНАХ ВЕЛИКИХ РЕК

18-й МЕЖДУНАРОДНЫЙ НАУЧНО-ПРОМЫШЛЕННЫЙ ФОРУМ

BEJDIKUE PEKIN

30.000/ARXA (ИДРИМЕТЕРИВИТИКАЯ ВЕРПИККАЯ БЕЛІПЬКОКТЬ

РИССИЯ — ВИЗНАНИЙ НИВИ ОРОД. 3. 17-20 маяя 2010 года.

Труды конгресса «Великие реки» 2018 Выпуск 7, 2018 г.

ISBN 978-5-901722-60-2

УДК 519.876.5

**Н.С. Иванов** – студент ФГБОУ ВО «ВГУВТ»

**Т.В. Гордяскин** – доцент кафедры радиоэлектроники, к.ф-м.н., ФГБОУ ВО «ВГУВТ» 603951, г. Нижний Новгород, ул. Нестерова, 5

### МОДЕЛИРОВАНИЕ ПРОЦЕССОВ ПЕРЕДАЧИ ЗВУКОВОГО СООБЩЕНИЯ В РАДИОТЕХНИЧЕСКОМ КАНАЛЕ СВЯЗИ В MATLAB SIMULINK

Ключевые слова: радиотехнический канал связи, моделирование, амплитудная модуляция, детектирование, программная среда Matlab Simulink.

Проводится моделирование преобразования звукового сообщения в программе Matlab Simulink

При изучении объектов профессиональной деятельности студентами специальности «Техническая эксплуатация транспортного радиооборудования» важную роль играет знание базовых принципов формирования, передачи и приема радиотехнических сигналов, поэтому целесообразно эти процессы изучать на модели радиотехнического канала связи.[1]

#### 1. Классическая модель радиотехнического канала связи:

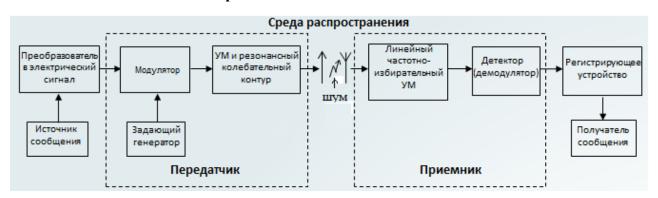



Рисунок 1. Радиотехнический канал связи

Рассмотрим работу каждого компонента канала радиосвязи подробнее. От источника сообщения подается речевой сигнал (человеческий голос), который преобразуется в электромеханические колебания низкой частоты в диапазоне от 20 Гц до 20 кГц. Далее сигнал поступает в блок модуляции, где низкочастотный звуковой сигнал в виде огибающей накладывается на высокочастотный несущий сигнал для перевода сигнала в область высоких частот. После блока модуляции сигнал усиливается и передается на передающую антенну, которая излучает сигнал в среду распространения. Приемник из множества сигналов выделяет сигнал заданной частоты, который затем поступает в блок детектора, где происходит процесс, обратный модуляции. В этом процессе извлекается полезная информация, содержащаяся в огибающей амплитуды

низкочастотного сообщения. Этот сигнал подается на регистрирующее устройство (динамик) из которого получатель и слышит принятый сигнал.

## 1.1. Объект исследования – радиотехнический сигнал звукового диапазона частот

Модель схемы канала радиосвязи в Matlab Simulink представлена на рисунке 2. [1]

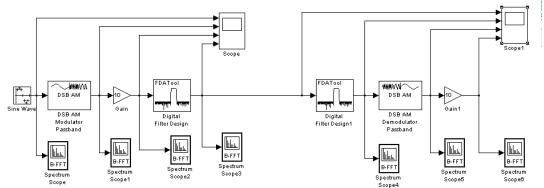



Рисунок 2. Модель радиотехнического канала связи в Matlab Simulink

Схема передатчика состоит из генератора, задающего синусоидальное колебание (Sine Wave), модулятора (DSB AM Modulator Passband), усилителя (Gain) и полосового фильтра (Digital Filter Design). Все модули радиотехнического канала связи обрабатывают дискретный сигнал с единой частотой дискретизации, значение которой определяется в соответствии с теоремой Котельникова ( $F_{\text{дискр}} \ge 2F_{\text{верх.}}$ ).

Схема приемника состоит из полосового фильтра(Digital Filter Design 1), демодулятора (DSB AM Demodulator Passband), усилителя (Gain 1) и оконечного устройства (To Audio Device).

Так как основной задачей радиотехнического канала связи является передача сигнала через радиотехнический канал без потери качества, то, анализируя осциллограмму и спектр выходного сигнала на приемной стороне канала связи, можно сделать вывод о качестве доставленного получателю сигнала (звукового сообщения).

Рассмотрим передачу гармонического сигнала звукового диапазона частот с частотой дискретизации fg=44,1 к $\Gamma$ ц, частотой передаваемого сообщения fy=1 к $\Gamma$ ц и несущей fн=12 к $\Gamma$ ц.

Осциллограммы и спектры на входах и выходах радиотехнических средств канала связи (на Рис. 3).

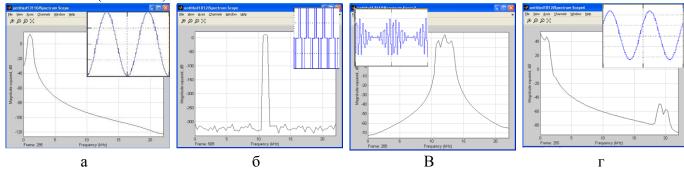



Рисунок 3. а) Осциллограмма и спектр управляющего сигнала на входе передатчика; б) осциллограмма и спектр несущего сигнала передатчика (fn=12 кГц); в) осциллограмма и спектр на выходе передатчика с амплитудной модуляцией; г) осциллограмма и спектр на выходе приемника

В рассмотренной модели канала связи (рис. 2) в среде распространения помеха отсутствует, поэтому сигнал на входе приемника совпадает с сигналом на выходе передатчика (рис.3.в).

Детектирование АМ – сигнала в приемном устройстве производится для выделения из высокочастотного сигнала, несущего в себе информацию, низкочастотной информационной огибающей, которая в дальнейшем поступает на оконечное устройство.

На выход приемника сигнал прошел практически без искажений.

## 2. Рассмотрим процесс передачи речевого сообщения на частоте несущего сигнала 12 кГц.

Для эффективной передачи речевого сообщения верхняя частота его спектра fmax должна быть значительно меньше частоты несущего сигнала  $fh=12\kappa\Gamma\mu$ , поэтому необходимо звуковое сообщение ограничить частотой (пусть  $fmax=2\kappa\Gamma\mu$ ).

Для моделирования в Matlab Simulink речевое сообщение необходимо подготовить. [2-4]

1. Перед началом работы «нарезать» аудиофайл (5-10 сек) в программе Audacity и сохранить её в формате "wav".

Wav- формат файла-контейнера для хранения записи оцифрованного аудиопотока. Этот контейнер, как правило, используется для хранения несжатого звука в импульсно-кодовой модуляции.

2. В программном пакете Matlab в рабочем поле(workspace) вызвать функцию wavread.

[y,fs]=wavread('путь до файла.wav'); **Важно:** Путь к файлу не должен содержать русских букв.

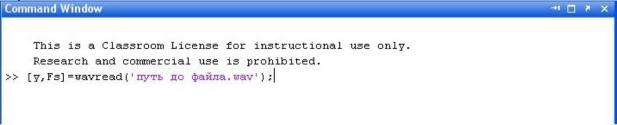



Рисунок 4. Пример вызова функции wavread в рабочем поле Matlab

Пример: [y,fs]=wavread ("C:\rabota\music\narezka.wav")

Y – Значение сигнала.

Fs – Частота дискретизации (44100 Гц).

3. Вызвать функцию sptool (Signal processing toolbooks). В рабочем поле ввести команду "sptool".Открывается окно:

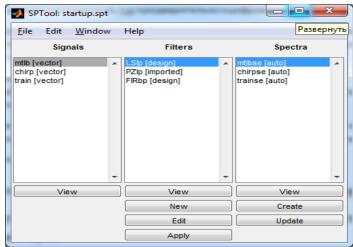



Рисунок 5. Окно sptool

Добавить аудиозапись в sptool.

В меню File выбрать Import...From Workspace...

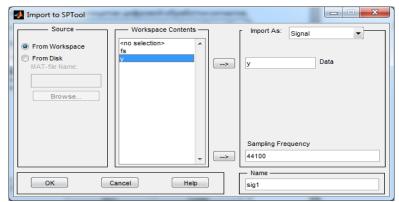



Рисунок 6. Окно выбора Import to SPTool

Выбрать переменную (Content) "у" и добавить её значение в "Data". Выбрать переменную "Fs" и добавить её значение в "Sampling Frequency". Нажать ОК.

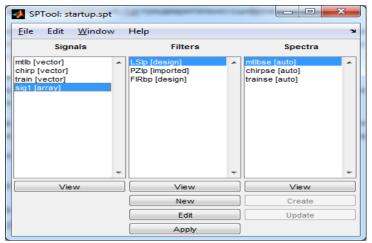



Рисунок 7. Рабочее окно SPTool В столбце Signals появился новый сигнал (sig1 [array]).

Передача звукового сообщения при использовании амплитудной модуляции (модель канала связи приведена на рисунке 11).

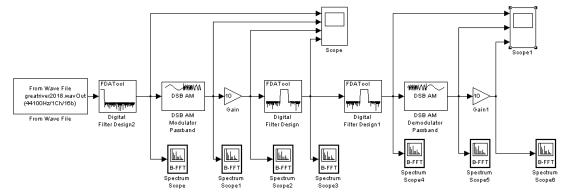



Рисунок 8. Модель канала связи при передаче звукового сообщения

По сравнению со схемой (рисунок 2) появились 2 новых блока: From Wave File и Digital Filter Design 2. Первый блок задает речевой сигнал, загруженный в программу Matlab, в формате wav. Фильтр низкой частоты производит подавление высокочастотных

составляющих на частотах выше 2 кГц. Все остальные процессы происходят аналогично,

как и в схеме радиотехнического канала связи (рис. 2).

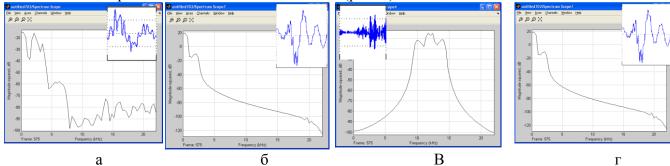



Рисунок 9.а) Осциллограмма и спектр на входе передатчика; б) осциллограмма и спектр входного сигнала на выходе ФНЧ передатчика; в) осциллограмма и спектр сигнала на выходе передатчика с использованием амплитудной модуляции на частоте несущего колебания (fn=12  $\kappa\Gamma$ u); г) осциллограмма и спектр на выходе приемника модуляции

#### Исследование влияния помехи в канале при передаче звукового сигнала.

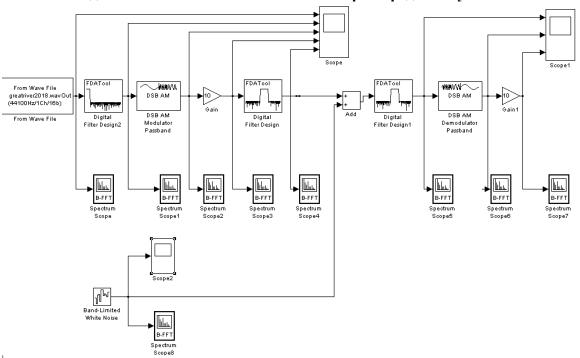



Рисунок 10. Модель схемы передачи звукового сообщения при использовании амплитудной

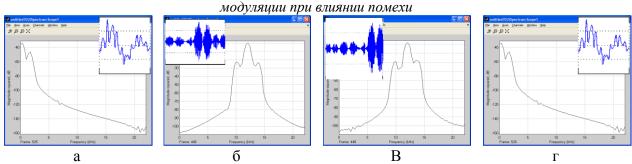



Рисунок 11.a) Осциллограмма и спектр на входе передатчика; б) осциллограмма и спектр на выходе передатчика при использовании амплитудной модуляции; в) осциллограмма и спектр на входе приемника при влиянии помехи на сигнал; г) осциллограмма и спектр на выходе приемника при влиянии помехи

Методика проведенных исследований может быть использована при разработке лабораторных работ по дисциплинам «Радиотехнические цепи и сигналы», «Прикладные задачи цифровой обработки сигналов». Внедрение данной методики в учебный процесс

позволит закрепить студентам фундаментальные знания по теории радиотехнических цепей и сигналов и цифровой обработки.

#### Список литературы:

- [1]. Гордяскина Т.В., Ипатов А.А., Ипатова Н.В. Исследование процесса преобразования сигналов в радиотехническом канале связи с использованием программной среды Matlab Simulink R2009B. Вестник Волжской государственной академии водного транспорта. Выпуск 51. Изд-во ФГБОУ ВО «ВГУВТ». Н. Новгород, 2017г. С.30-39.
- [2]. Гордяскина Т.В., Ипатов А.А., Филинова Н.В. Основы цифровой фильтрации сигналов звукового диапазона в программном пакете MatlabR2007B. Труды 17-го международного научно-промышленного форума "Великие реки-2015"(19-22 мая 2015 г.) [Электронный ресурс]. <a href="http://вф-река-море.рф/2015/PDF/32.pdf">http://вф-река-море.рф/2015/PDF/32.pdf</a>
- [3]. Филинова Н.В., Ипатов А.А., Гордяскина Т.В. Цифровая обработка детерминированных сигналов в программной среде Simulink Matlab R2009. Труды 18-го международного научно-промышленного форума "Великие реки-2016". (17-20 мая 2016 г.) [Электронный ресурс]. http://вф-река-море.рф/2016/PDF/37.pdf
- [4]. Ипатова Н.В., Ипатов А.А., Гордяскина Т.В. Исследование процесса преобразования сигналов в радиотехническом канале связи с использованием программной среды Matlab Simulink R2009B. Вестник Волжской государственной академии водного транспорта. Выпуск 51.— Н. Новгород: Изд-во ФГБОУ ВО «ВГУВТ», 2017г.— С. 30-36.

## MODELING OF SOUND TRANSMISSION IN RADIO COMMUNICATION CHANNEL IN MATLAB SIMULINK

Ivanov N.S. – student of the Volga state university of water transport Gordyaskina T.V. – candidate of physical and mathematical Sciences

Keywords: radio communication channel, modulation, amplitude modulation, detection, software environment Simulink Matlab.

Modeling of transformation of the sound message in the program Matlab Simulink.