

ПРОБЛЕМЫ ИСПОЛЬЗОВАНИЯ И ИННОВАЦИОННОГО РАЗВИТИЯ ВНУТРЕННИХ ВОДНЫХ ПУТЕЙ В БАССЕЙНАХВЕЛИКИХ РЕК

18-й МЕЖДУНАРОДНЫЙ НАУЧНО-ПРОМЫШЛЕННЫЙ ФОРУМ
ВЕЛИКИЕ РЕКИ
ЗОООГИЕКТАЯ ПАДРИКТИРИОМ ВЕКТА ВЕРПИКИЕТАЯ БЕЛТИКИЕТЬ
РОССИИ - ВИСКИНИЙ МОВІ ОРОД. - 17-20 млня 2010 года

Труды конгресса «Великие реки» 2019 Выпуск 8, 2019 г.

ISBN 978-5-901722-63-3

УДК 621.313.3

Хватов Олег Станиславович, проф., д.т.н., кафедра электротехники и электрооборудования объектов водного транспорта ФГБОУ ВО «ВГУВТ»

Тарпанов Илья Александрович, ст. преп., к.т.н., кафедра электротехники и электрооборудования объектов водного транспорта ФГБОУ ВО «ВГУВТ»

Кобяков Дмитрий Сергеевич, аспирант, кафедра электротехники и электрооборудования объектов водного транспорта ФГБОУ ВО «ВГУВТ»

Юрлов Михаил Евгеньевич, аспирант, кафедра электротехники и электрооборудования объектов водного транспорта ФГБОУ ВО «ВГУВТ»

Федеральное государственное бюджетное образовательное учреждение высшего образования «Волжский государственный университет водного транспорта» (ФГБОУ ВО «ВГУВТ»), 603951, г. Нижний Новгород, ул. Нестерова, 5.

МОДЕЛИРОВАНИЕ ПАРАЛЛЕЛЬНОЙ РАБОТЫ ДИЗЕЛЬ-ГЕНЕРАТОРНЫХ УСТАНОВОК ПОСТОЯННОЙ И ПЕРЕМЕННОЙ ЧАСТОТЫ ВРАЩЕНИЯ

Ключевые слова: дизель-генератор, переменная скорость, судовые генераторы.

В статье рассматривается параллельная работа дизель — генераторных установок с постоянной и переменной частотой вращения.

В автономных системах электроснабжения в качестве источника электрической энергии чаще всего используются дизель-генераторные установки (ДГУ), которые обычно работают с постоянной частотой вращения. Благодаря относительной простоте подобные нашли широкое применение как в России, так и Тем не менее, дизель-генераторные установки имеют высокий удельный расход углеводородного топлива в режиме долевых нагрузок двигателя внутреннего сгорания. Также уменьшается механический ресурс дизельного двигателя и растут выбросы вредных Для того, чтобы снизить удельный расход топлива и повысить энергоэффективность, целесообразно регулировать частоту вращения вала ДГУ в зависимости от величины электропотребления [1,3]. Существует большое разнообразие электрических схем инверторных ДГУ, однако все они имеют звено постоянного тока для обеспечения требуемых параметров выходного напряжения. Кроме того, с помощью звена постоянного тока значительно упрощается процесс включения на параллельную работу нескольких ДГУ. Подобные системы обладают широкими возможностями эффективного управления режимами работы всех источников и потребителей, входящих в единую

В данной работе рассмотрена параллельная работа дизель-генераторной установки переменной частоты вращения (ДГПЧВ) и классической ДГУ. В зависимости от нагрузки ДГПЧВ регулирует частоту вращения и обеспечивает равномерное распределение потребляемой мощности на обе установки. Для обеспечения запаса по напряжению в ДГПЧВ используется понижающий широтно-импульсный преобразователь и повышающий трансформатор.

Функциональная схема ДГУ и ДГПЧВ, объединенных по звену постоянного тока, представлена на рис. 1.

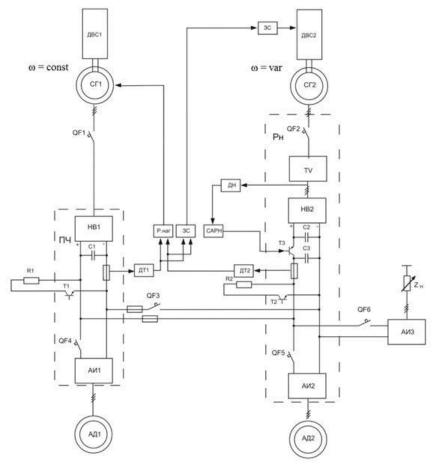


Рис. 1. Функциональная схема судовой единой электростанции с общим звеном постоянного тока и дизель – генератором переменной частоты вращения.

Рассмотрим принцип работы установки. ДГПЧВ регулирует частоту вращения вала дизельного двигателя в зависимости от нагрузки в канале электродвижения судна. Кроме того, задача ДГПЧВ - равномерно распределить нагрузку между генераторами СГ1 и СГ2 вне зависимости от нагрузки на каждый из гребных электродвигателей АД1 и АД2. В данной функциональной схеме рассмотрена трансформаторная топология ДГПЧВ [5]. Преобразователи обоих ДГУ соединены на стороне постоянного тока. Регулятор нагрузки Рнаг воздействует на систему возбуждения СГ1, изменяя величину напряжения на его статоре. В качестве системы регулирования частоты вращения ДГУ может выступать нейросетевой или нечеткий регулятор оборотов. Таким образом, применение на судне ДГПЧВ в паре с классической ДГУ позволяет обеспечивать энергоэффективный режим работы дизельного двигателя внутреннего сгорания на долевых режимах работы. Также рационален данный подход весьма точки зрения модернизации судовых электроэнергетических систем.

Далее в статье рассматриваются различные варианты силовых топологий дизель – генераторов переменной частоты вращения (ДГПЧВ). Основным устройством, обеспечивающим стабилизацию параметров генерируемой электроэнергии ДГПЧВ, является полупроводниковый преобразователь, схемотехническое исполнение которого зависит от наличия трансформатора в составе оборудования генераторного комплекса. Рассмотрим варианты структур построения ДГПЧВ, которые представлены на рис. 2 и рис. 3. На данных рисунках: СГ – синхронный генератор, Т – трансформатор, ВЧТ –

высокочастотный трансформатор, B – выпрямитель, AB – активный выпрямитель, ШИП – широтно-импульсный преобразователь, И – инвертор, Φ 1, Φ 2 – фильтры, H – нагрузка.

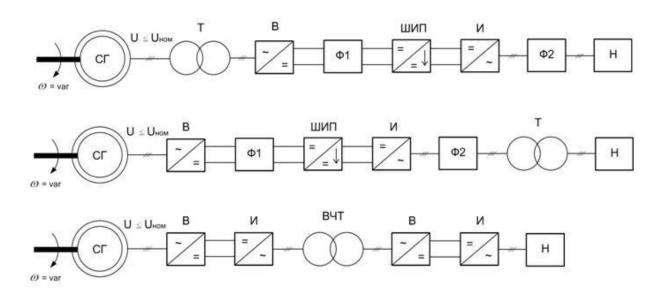


Рис.2. Структурные схемы трансформаторных ДГПЧВ

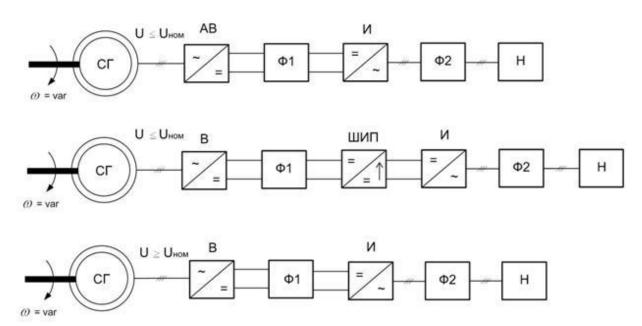


Рис.3. Структурные схемы бестрансформаторных ДГПЧВ

Данные структуры ДГПЧВ разделены на две группы – трансформаторные (рис. 2) и бестрансформаторные (рис. 3). Трансформаторные структуры по исполнению могут быть с обычным либо высокочастотным трансформатором. Использование высокочастотного трансформатора существенно снижает его массогабаритные показатели, однако усложняет структуру преобразовательной части ДГПЧВ, которая должна иметь два выпрямительных и два инверторных блока.

Бестрансформаторные структуры ДГПЧВ — это системы с активным выпрямителем, либо с широтно-импульсным преобразователем повышающего типа, т.е. с устройствами, которые функционально, как и трансформатор, обеспечивают поддержание требуемого уровня напряжения. К бестрансформаторным также следует отнести ДГПЧВ с генераторами специального исполнения, имеющими повышенное номинальное напряжения на статоре.

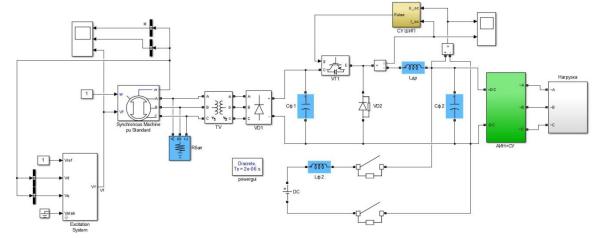


Рис.4. Имитационная модель трансформаторной ДГПЧВ

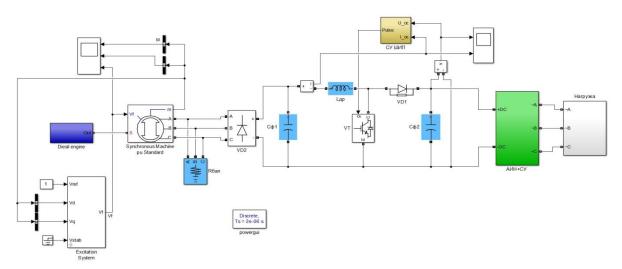


Рис. 5. Имитационная модель бестрансформаторной ДГПЧВ

На рис. 4 представлена имитационная модели трансформаторной ДГПЧВ, а на рис. 5 - бестрансформаторной ДГПЧВ. Модели собраны в пакете *Simulink* среды моделирования *MathLab*.

Полученные модели могут быть использованы для расчета и анализа динамических режимов работы генераторного комплекса с учетом величины и характера нагрузки в сети, а также энергоэффективного значения частоты вращения ДГПЧВ.

Список литературы:

- [1] Артюхов И.И., Степанов С.Ф., Бочкарев Д.А., Ербаев Е.Т. Особенности построения автономных систем электропитания на основе генераторов с изменяемой скоростью вращения вала // Вопросы электротехнологии. -2015. N01. С. 58-64.
- [2] Хватов О.С., Дарьенков А.Б., Самоявчев И.С. Топливная экономичность единой электростанции автономного объекта на базе двигателя внутреннего сгорания переменной скорости вращения // Эксплуатация морского транспорта. СПб. 2012. 1(71). С. 47 50.
- [3] Обухов С.Г., Сипайлова Н.Ю., Плотников И.А., Сипайлов А.Г. Характеристики синхронного генератора, работающего в составеинверторной дизельной электростанции // Известия высших учебных заведений. Электромеханика. 2012. № 5. С. 41-45.
- [4] Обухов С.Г., Плотников И.А. Сравнительный анализ схем автономных электростанций, использующих установки возобновляемой энергетики // Промышленная энергетика. -2012.-N 2.-C.46-51.

[5] Хватов О.С., Бурда Е.М., Тарпанов И.А., Кшталтный Н.И. Перспективные варианты судовых электростанций с дизель – генераторами переменной частоты вращения// Труды конгресса «Великие реки» – Выпуск 7, 2018г.

SIMULATION OF PARALLEL OPERATION OF DIESEL GENERATOR SETS WITH CONSTANT AND VARIABLE SPEED

Oleg S. Khvatov, Ilja A. Tarpanov, Dmitry S. Kobyakov, Michail E. Yurlov

Keywords: diesel generator, variable speed, ship generators.

The article is devoted to the operation of diesel generator sets with constant and variable speed