

ПРОБЛЕМЫ ИСПОЛЬЗОВАНИЯ И ИННОВАЦИОННОГО РАЗВИТИЯ ВНУТРЕННИХ ВОДНЫХ ПУТЕЙ В БАССЕЙНАХ ВЕЛИКИХ РЕК

18-й МЕЖДУНАРОДНЫЙ НАVЧНО-ПРОМЫШЛЕННЫЙ ФОРУМ

BEJINIKUE PEKKU

SUMMIRESAA ПДЛИКТЕРИКУА БУРТЕНСКАЯ БОЛГАЖИКИ
РИССИЯ - ВИЗКИМИ НОВЕНИКУ СТ. 17-20 МИКИ 2010 ГОДА

Труды конгресса «Великие реки» 2019 Выпуск 8, 2019 г.

ISBN 978-5-901722-63-3

УДК 517.9

Белых Владимир Николаевич, профессор, д.ф.-м.н., заведующий кафедрой математики ФГБОУ ВО «ВГУВТ»

Киняпина Марина Сергеевна, старший преподаватель кафедры математики ФГБОУ ВО «ВГУВТ»

Шестерикова Наталия Васильевна, доцент, к.э.н., доцент кафедры математики ФГБОУ ВО «ВГУВТ»

Федеральное государственное бюджетное образовательное учреждение высшего образования «Волжский государственный университет водного транспорта» (ФГБОУ ВО «ВГУВТ»)

603951, г. Нижний Новгород, ул. Нестерова, 5.

КАЧЕСТВЕННО – ЧИСЛЕННОЕ ИССЛЕДОВАНИЕ ТРЕХМЕРНОЙ СИСТЕМЫ С ЦИЛИНДРИЧЕСКИМ ФАЗОВЫМ ПРОСТРАНСТВОМ

Ключевые слова: динамические системы, бифуркации, фазовые портреты, сложная динамика, гомоклиническая орбита седла.

Проводится качественно исследование нелинейной системы третьего порядка с цилиндрическим фазовым пространством. Эта системы моделирует сверхпроводящий джозефсоновский переход при учете индуктивности. В работе получены фазовые портреты и бифуркации в случае малого параметра при производной. В общем случае показано существование бифуркации гомоклинической орбиты седла (седло — фокуса), приводящей при положительной седловой величине к сложной динамике.

В работе проводится качественно — численный анализ динамики изолированного сверхпроводящего джозефсоновского контакта с негармонической зависимостью сверхпроводящей компоненты тока от разности фаз и емкостью в рамках резистивной модели [1], эквивалентная схема которой представлена на рисунке 1.

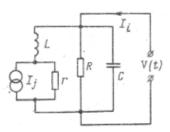


Рис.1. Эквивалентная схема одноконтактного интерферометра с индуктивно — емкостной нагрузкой

В отличие от резистивной модели джозефсоновского контакта [1] здесь учтено шунтирующее сопротивление контакта r, и собственная индуктивность контакта L, приводящие к ангармонической зависимости тока от фазы.

Динамические свойства такой модели описываются системой обыкновенных дифференциальных уравнений ([2], [3], [4], [5]):

$$\begin{cases} V = L \frac{dI_{j}}{dt} + \frac{h}{2\pi} \frac{d\varphi_{i}}{dt}, \\ I_{i} = \frac{V}{R} + C \frac{dV}{dt} + I_{j}, \\ I_{j} = I_{0} \sin \varphi_{i} + \frac{1}{r} \frac{h}{2L} \frac{d\varphi_{i}}{dt}. \end{cases}$$
(1)

Вводя в этой системе уравнений новые переменные $u = \frac{I_{j}}{I_{0}}$, $\varphi = l_{j} + \varphi_{i}$ и параметры

$$eta = rac{R^2C2\pi I_0}{\Phi_0}\,,\;\; eta_r = rac{r^2C2\pi I_0}{\Phi_0}\,,\;\; \mu = leta_r^{-rac{1}{2}},\;\; l = rac{2\pi LI_0}{\Phi_0}\,,\;$$
 где I_0 — критический ток контакта, С —

емкость, R- сопротивление контура, r- шунтирующее сопротивление контакта, приходим к системе вида

$$\begin{cases} \dot{\varphi} = V, \\ \dot{V} = I - \beta^{-\frac{1}{2}}V - u, \\ \mu \dot{u} = -u + \frac{\mu}{l}V + \sin(\varphi - lu). \end{cases}$$
 (2)

При исследовании системы уравнений (2) используются качественно — численные методы теории дифференциальных уравнений.

При малом значении параметра μ данная система исследовалась в работе [1].

1. При l < 1 в цилиндрическом фазовом пространстве $G = \{\psi(\text{mod } 2\pi), V, u\}$ системы (2) существует глобально асимптотически устойчивая интегральная поверхность $S_{\mu} = \{u = u_{\mu}(\varphi)\}$, близкая к поверхности медленных движений $S_0 = \{u = u_0(\varphi)\}$, где $u_o(\varphi)$ решение уравнения $\sin(\varphi - lu) - u = 0$. Движение на поверхности $S_{\mu} = \{u = u_{\mu}(\varphi)\}$ задается траекториями, μ – близким к траекториям двумерной системы

$$\begin{cases} \dot{\varphi} = V, \\ \dot{V} = I - \beta^{-\frac{1}{2}} V - u_0(\varphi). \end{cases}$$

Получено разбиение фазового пространства на области с различным динамическим поведением. Это разбиение на плоскости параметров (β, I) определяется двумя кривыми, соответствующими бифуркации петли сепатрисы седло – узла или седла и бифуркации исчезновения состояния равновесия через седло – узел. Бифуркационная кривая $I = I(\beta, l)$ соответствует петле сепаратрисы седло — узла ($0 < \beta < \beta_0$) или седла ($\beta > \beta_0$), охватывающей верхний полуцилиндр, где eta_0 – минимальное значение параметра eta , соответствующее петле седло – узла. Прямая I=1 соответствует бифуркации исчезновения состояний равновесия через седло – узел. Данные бифуркационные кривые разбивают плоскость параметров (β, I) на три области. В области $\{0 < I < I\left(eta
ight), eta \ge eta_0; \ 0 < I < 1, \ eta < eta_0\ \}$ система глобально асимптотически устойчива: устойчивое равновесие O_1 притягивает весь фазовый цилиндр, кроме устойчивых сепаратрис седлового равновесия O_2 . В области $\{I(\beta) < I < 1\}$ система бистабильна: часть фазового цилиндра притягивается состоянием равновесия O_1 , а другая – устойчивым предельным циклом, охватывающим цилиндр, родившимся при бифуркации петли сепаратрисы при $I = I(\beta, l)$. В области $\{I > 1\}$ – существует единственный устойчивый предельный цикл, притягивающий весь цилиндр.

2. При l>1 поверхность медленных движений имеет на периоде складку $(u_0(\varphi))$ неоднозначна) такую, что на внутреннем участке складки поверхность $S_0=\{u=u_0(\varphi)\}$ неустойчива, а на внешних участках складки S_0 устойчива. При этом траектории на устойчивых участках, достигая границ области своего определения, срываются и перескакивают на другой устойчивый участок. Таким образом, динамика системы (2)

приближенно может быть описана той же двумерной системой со склейкой в критических точках складки. При $I \geq I_{\scriptscriptstyle S} = \sqrt{1-\frac{1}{l^2}}$ качественное поведение траекторий

то же, что и в случае l < 1, а при $I < I_s$ система имеет только одно (устойчивое) состояние равновесия. Указанная особенность определяет физическую характеристику – критический ток возврата.

3. В общем случае при произвольных значениях μ после замены переменных $\psi = \varphi - lu$,

$$l \cdot u = x$$
 , $\frac{l}{\mu}V = y$, $t = \mu \cdot t_{new}$, и введения новых параметров $l = a$, $l \cdot I = \gamma$, $\mu \beta^{-\frac{1}{2}} = \lambda$,

 $\frac{\mu^2}{I} = \varepsilon$ приходим к обобщенной системе вида:

$$\begin{cases} \dot{\psi} = x - a \sin \psi, \\ \dot{x} = -x + b \sin \psi + \varepsilon y, \\ \dot{y} = \gamma - x - \lambda y. \end{cases}$$
 (3)

соответствующей системе (2) при b = a .

Система (3) имеет также цилиндрическое фазовое пространство $G = \{ \psi \pmod{2\pi}, x, y \}$. Состояния равновесия системы определяются из условий

$$\begin{cases} x = a \sin \psi, \\ y = \frac{a - b}{\varepsilon} \sin \psi, \\ \sin \psi = A, \end{cases}$$

где $A = \frac{\varepsilon \gamma}{a\varepsilon + \lambda(a-b)}$. При |A| < 1 система (3) имеет два состояния равновесия O_1 и

 O_2 , координаты которых определяются аналитически через параметры системы (3): $O_{1,2}(aA,(a-b)\varepsilon^{-1}A,\psi_{1,2})$, где $\psi_1=\arcsin A$, $\psi_2=\pi-\arcsin A$.

Из анализа корней характеристического уравнения для состояний равновесия O_1 и O_2 получаем, что O_2 – седло или седло – фокус, а равновесие O_1 устойчиво в некоторой области параметров, но теряет устойчивость при увеличении параметра b.

В работе получено следующее утверждение

Теорема. В пространстве параметров системы (3) существует бифуркационная поверхность, соответствующая гомоклинической орбите седла (седло — фокуса) O_2 , охватывающая цилиндр.

Доказательство теоремы проводится в два этапа.

Этап 1. Два последних уравнения системы представляются в виде линейной системы с возмущением:

где матрица $A = \begin{pmatrix} -1 & \varepsilon \\ -1 & -\lambda \end{pmatrix}$.

Поскольку матрица А гурвицева, а возмущение ограничено, система (4) при любой динамике переменной ψ имеет притягивающую область $D = \left\{ \left| \left. x \right| < x_0, \right| y \right| < y_0 \right\}$.

Этап 2. Рассматриваются два первых уравнения системы (3) в области D, для которых задаются две вспомогательные системы сравнения

$$\dot{\psi} = x - a\sin\psi, \ \dot{x} = -x + b\sin\psi \pm \varepsilon y_0, \tag{5}$$

заданные на цилиндре (ψ, x) . Сепаратрисы систем (5) задают «русла», в которых расположены устойчивые и неустойчивые многообразия седла (седло — фокуса) O_2 . Эти русла «управляют» взаимным расположением многообразий равновесия O_2 и смена их взаимного расположении при изменении параметров означает существование бифуркации гомоклинической орбиты (седло — фокуса) O_2 . В случае положительности седловой величины равновесия O_2 получаем шильниковскую хаотическую компоненту неблуждающего множества ([6], [7]).

Работа выполнена при поддержке РФФИ (проект 18–01–00556 А).

Список литературы:

- [1] Белых В.Н., Зубков А.А., Киняпина М.С., Попков А.Ф., Фрайман Л.А. Динамические характеристики Джозефсоновских контактов с негармонической зависимостью тока от фазы. // Радиотехника и электроника. 1992. Вып.7 С.
- [2] Лихарев К.К. Введение в динамику джозефсоновских переходов. М.: Наука, 1885.
- [3] Бароне А., Патерно Дж. Эффект Джозефсона/ Пер. с англ. Под ред. Асламазова Л.Г., Булаевского Л.Н., Веденеева С.И. М.: Мир, 1984.
- [4] Belykh V.N., Pedersen N.F., Soerensen O.H. Shunted Josepson Junction Model. Part 1. Autonomous case. Part II. Nonautonomous case// Physical Review B. 1977. V.16, N 11. P. 4853 4871.
- [5] Белых В.Н., Веричев Н.Н., Киняпина М.С., Фрайман Л.А. Регулярная и хаотическая динамика систем со сверхпродящими переходами// Прикладная нелинейная динамика. 1993. т.1, №1. С.15 18.
- [6] Shilnikov, L.P. & Shilnikov, A.L. Shilnikov bifurcation.// Scholarpedia. 2(8) (2007): 1891. [7] Шильников Л.П., Шильников А.Л., Тураев Д.В., Чуа Л. Методы качественной теории в нелинейной динамики. Москва Ижевск: Институт компьютерных исследований, 2004. с. 416.

QUALITATIVE - NUMERICAL STUDY OF A THREE DIMENSIONAL SYSTEM WITH CYLINDRICAL PHASE SPACE

Vladimir N. Belykh, M.S. Kinypina, N.V. Shesterikova

Key words: dynamical systems, bifurcations, homoclinic orbit, phase portraits.

We consider a three dimensional system with cylindrical phase space. This system describes a superconducting Josephson junction with induction. The phase portraits and bifurcational diagram are obtain for the case of a small parameter as a multiplier of a derivative. We show the existence of the homoclinic orbit of the saddle – focus equilibrium point. In the case of positive saddle value this leads to a complicated dynamics.