

ПРОБЛЕМЫ ИСПОЛЬЗОВАНИЯ И ИННОВАЦИОННОГО РАЗВИТИЯ ВНУТРЕННИХ ВОДНЫХ ПУТЕЙ В БАССЕЙНАХ ВЕЛИКИХ РЕК

DESERTING THE PROPERTY OF THE PARTY OF THE P

Труды конгресса «Великие реки» 2020 Выпуск 9, 2020 г.

ISBN 978-5-901722-67-1

УДК 656. УДК 378.14.015.62

Новиков Сергей Павлович, доцент, к.т.н., доцент кафедры теории конструирования инженерных сооружений

Волжский государственный университет водного транспорта

603951, г. Нижний Новгород, ул. Нестерова, 5.

Самарский государственный университет путей сообщения, Филиал в г. Нижний Новгород

603011 г. Нижний Новгород, Комсомольская пл., д 3.

ОПЫТ ПРЕПОДАВАНИЯ ГРАФИЧЕСКИХ ДИСЦИПЛИН В PAMKAX СИСТЕМЫ MOODLE

Аннотация. В статье описаны особенности применения виртуальной среды на базе MOODLE в рамках преподавания дисциплины «Начертательная геометрия и инженерная графика». Проанализировано влияние информационных и коммуникационных технологий на успеваемость студентов очной формы обучения. Описаны возможности дальнейшего развития имеющейся виртуальной среды для преподавания графических дисциплин.

Ключевые слова: дистанционное обучение, инженерная и компьютерная графика, самостоятельная работа студента, начертательная геометрия.

Введение

В настоящее время в связи с активным использованием в сфере образования информационных и коммуникационных технологий вопросы рациональной организации образовательного процесса с использованием электронных средств обучения приобретают все большую актуальность. Преподаватель, не применяющий дистанционные технологии владеюший основами электронного обучения. становится конкурентоспособным в профессиональном сообществе; он часто не интересен своим студентам из-за отсутствия мобильности в способах общения, лишен возможностей иное образовательное пространство — организовывать виртуальную образовательную среду для взаимодействия с обучающимися [1]. При дистанционном обучении основу образовательного процесса составляет контролируемая, интенсивная и целенаправленная самостоятельная работа студента. В соответствии с этим учебный процесс преподавания дисциплины организуется таким образом, чтобы максимально обеспечить самостоятельное освоение студентом учебного материала, выполнение индивидуальных домашних заданий и сдачу итоговых отчетностей по дисциплине [2].

Тенденция по внедрению электронных средств обучения в вузовский учебный процесс не обошла стороной и сферу геометро-графического образования, что подтверждается значительным увеличением количества научно-методических публикаций, посвященных этой теме в последнее время. В процессе изучения графических дисциплин студенты должны воспринимать и анализировать огромное количество пространственных образов. Наряду с традиционными средствами обучения информационные технологии дают преподавателю новые учебные инструменты, которые позволяют улучшить степень усвоения студентами этих пространственных образов. К

таким средствам можно отнести, например, видеоуроки, демонстрационные анимированные слайды, файлы с 3D-моделями и др. Наличие данных средств, являющихся составной частью целостной системы дистанционного обучения (далее – СДО) позволяет интенсифицировать процесс освоения графических дисциплин.

Основная часть

Одной из наиболее популярных СДО в настоящее время является система Moodle. Интерфейс системы Moodle интуитивно понятен и удобен для различных форм обучения: очного, заочного, очно-заочного, в том числе с использованием дистанционных технологий [1]. В 2019 — 2020 учебном году на кафедре Теории конструирования инженерных сооружений Волжского государственного университета водного транспорта было решено провести эксперимент по внедрению СДО на базе Moodle в учебный процесс дисциплины «Начертательная геометрия и инженерная графика» на 1 курсе очной формы обучения одной из специальностей. Решено было пока не использовать данные технологии для заочной формы, принимая во внимание отрицательный опыт коллег [3].

В качестве основы была взята смешанная модель организации учебного процесса, в которой совмещается применение электронного обучения, дистанционных образовательных технологий и традиционного обучения [1]. При использовании смешанной модели обучения СДО используется для информационной поддержки и сопровождения традиционной модели очного обучения. Такой подход удобен на начальном этапе внедрения СДО в учебную деятельность, при котором трудности внедрения электронного обучения могут быть компенсированы взаимодействием в рамках традиционного очного формата. При этом работа в рамках СДО позволяет организовать и обеспечить самостоятельную работу студентов на более высоком уровне. Следует отметить основные предпосылки к созданию курса с использованием СДО:

- ограниченные тиражи печатных изданий учебно методической литературы и тенденция в сторону использования цифровых версий изданий. Материал электронного курса может обладать гибкой структурой предоставления учебной информации студенту с использованием гиперссылок на несколько литературных источников, как внутривузовских, так и внешних. Рисунки и иллюстрации в цифровом формате являются полноцветными и обладают более высоким качеством по сравнению с качеством иллюстраций вузовской печатной продукции;
- необходимость организации учебного процесса в соответствии с современными требованиями. Нынешние абитуриенты относятся к так называемому поколению Z, которое сформировалось в условиях цифровой среды. Современная система образования призвана интегрироваться в естественную для этого поколения информационную среду и обеспечить при этом достижение требуемого образовательного результата;
- возможность использования новых учебных инструментов в рамках электронного обучения, позволяющих улучшить процесс восприятия студентами различной визуальной информации, что очень важно при изучении графических дисциплин.

Для создания качественного дистанционного курса не достаточно просто перевести в электронный формат материалы очного обучения. Информационно-обучающие материалы должны быть иначе структурированы и изложены в удобной для восприятия с экрана форме, не перегружены текстом, должны иметь большое количество иллюстраций и полезных ссылок. Для проверки усвоения информации желательно в конце каждого раздела размещать контрольные вопросы.

Электронный учебно-методический комплекс дисциплины «Начертательная геометрия и инженерная графика» состоит из двух основных блоков:

- 1. Информационно-обучающий блок;
- 2. Блок лабораторного практикума.

Информационно-обучающий блок разделен на несколько тем в соответствии с учебной программой дисциплины. Ядром каждой темы является интерактивная лекция, снабженная большим количеством иллюстраций и ссылками на дополнительные источники информации. В конце каждой лекции присутствует страница с вопросами и переход на следующую страницу возможен только после получения верного ответа на эти вопросы. Для реализации эксперимента была изменена рабочая программа дисциплины в части нагрузки – лекционные занятия были преобразованы в практические занятия по подгруппам. Теоретический материал по темам дисциплины студенты должны были освоить самостоятельно и затем на практических занятиях обсудить вопросы, вызывающие затруднения. Практические занятия также были посвящены решению вручную графических задач по темам дисциплины в рабочей тетради, доступной для свободного скачивания из системы и содержащей заготовки графических задач. Для каждой из задач была создана трехмерная визуализация в виде 3D-модели, выполненной в программе КОМПАС-3D, доступная для свободного скачивания. После скачивания модель может быть открыта в КОМПАС-3D и далее с помощью команды «Ориентация» можно осуществить ее обзор с разных сторон. Кроме того, для каждой задачи создана иллюстративная анимированная презентация в формате Power Point, которая отражает последовательность действий по решению этой задачи на 2D-чертеже (рис.1). В информационно-обучающем блоке также размещены задания по расчетно – графическим работам, которые студенты обязаны выполнить вручную в течение семестра.

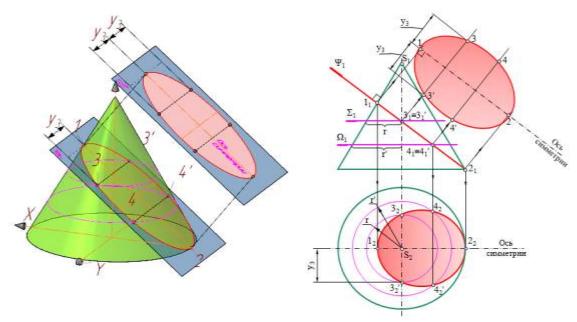


Рис. 1. Пример 3D-визуализации и 2D-чертежа для одной из графических задач.

Блок лабораторного практикума содержит несколько лабораторных работ, целью которых является как базовая графическая подготовка студентов, так и освоение ими графического редактора КОМПАС-3D. Материал лабораторных работ представляет собой подробную иллюстрированную инструкцию по выполнению двухмерных чертежей по индивидуальным вариантам в программе KOMΠAC-3D. Порядок выполнения лабораторных работ прописан очень подробно с тем расчетом, чтобы студент мог самостоятельно при минимальных консультациях ИХ преподавателя. Также каждая лабораторная работа продублирована видеороликом, представляющим из себя запись с экрана процесса ее выполнения. Следует отметить, что электронный формат курса позволяет быстро вносить изменения и дополнения в его материалы, а также оперативно исправлять ошибки, допущенные в материалах. Это является значительным плюсом электронного формата по сравнению с печатным.

Разумеется, для обеспечения полноценной деятельности в рамках СДО, необходимо, чтобы студенты имели учетную запись в системе и были зачислены на конкретный курс [4]. В этом случае преподаватель может отслеживать результаты обучения в дистанционном режиме по каждому студенту индивидуально. Однако, учитывая экспериментальный характер нашего курса и его вспомогательную роль по отношению к традиционному аудиторному обучению, студентам был предоставлен гостевой доступ к курсу с общим паролем. Тем не менее, использование курса даже в таком «урезанном» формате позволило несколько улучшить результаты самостоятельной работы студентов, что в свою очередь положительно сказалось на общей успеваемости по дисциплине. Студенты также в целом положительно отнеслись к новой методике обучения, хотя нельзя не отметить и трудности. У некоторых студентов возникли сложности при работе в рамках курса, связанные с их низкой базовой компьютерной подготовкой. Кроме того, не все студенты смогли обеспечить свои удаленные рабочие места необходимым для прохождения курса программным обеспечением (КОМПАС-3D).

Применение систем дистанционной поддержки работы студентов увеличивает нагрузку на преподавателя до 60% [3]. На создание материалов СДО и наполнение ими системы также требуется значительное количество времени. Решение вопроса по включению в нагрузку преподавателя тьюторской деятельности позволит изменить отношение преподавателей к применению дистанционных форм в сопровождении самостоятельной работы студентов очной формы обучения и, соответственно, будет способствовать повышению ее эффективности [3].

Заключение

Подводя итоги работы в рамках эксперимента по внедрению СДО в учебный процесс по дисциплине «Начертательная геометрия и инженерная графика», можно отметить несомненный положительный эффект этого внедрения. Наличие данного курса стало настоящей палочкой-выручалочкой при дистанционного обучения студентов во время карантина (COVID-19). Есть мнение, что при использовании полноценных возможностей СДО (создание учетных записей студентов в системе, проведение тестирования студентов внутри курса, выдача графических заданий и контроль их выполнения, дистанционное консультирование студентов и т.д.) курс будет выведен на новый уровень и станет одним из важнейших элементов учебного процесса в рамках дисциплины. Вместе с тем и преподаватели, и руководство вузов должны понимать, что внедрение подобных технологий - это серьезная задача, требующая большого количества материальных, интеллектуальных и временных ресурсов.

Список литературы:

- 1. Вайндорф-Сысоева М.Е. Методика дистанционного обучения: учебное пособие для вузов / М. Е. Вайндорф-Сысоева, Т. С. Грязнова, В. А. Шитова; под общей редакцией М. Е. Вайндорф-Сысоевой. Москва: Издательство Юрайт, 2020. 194 с. (Высшее образование). ISBN 978-5-9916-9202-1. Текст: электронный // ЭБС Юрайт [сайт]. с. 6 URL: https://urait.ru/bcode/450836
- 2. Буркова С.П., Винокурова Г.Ф., Долотова Р.Г. Использование электронного обучения и дистанционных образовательных технологий в обеспечении дисциплины «Начертательная геометрия и инженерная графика» // Современные проблемы науки и образования. 2014. № 3.; URL: http://science-education.ru/ru/article/view?id=13550
- 3. Вольхин К.А. Применение модульной объектно-ориентированной дистанционной системы обучения в инженерной графической подготовке студента // Проблемы качества графической подготовки студентов в техническом вузе: традиции и инновации (КГП-2017): материалы VII Междунар. науч.-практ. интернет-конф.; февраль-март 2017 г. Вып. 4 Пермь: Изд-во Перм. нац. исслед. политех. ун-та, 2015. 470 с. С. 195–202.

4. Касперов Г. И., Калтыгин А. Л., Ращупкин С. В. Изучение дисциплин кафедры инженерной графики с использованием средств дистанционного обучения // Высшее техническое образование. 2018. том 2. № 1. С. 85–89

EXPERIENCE OF TEACHING OF GRAPHIC DISCIPLINES WITHIN MOODLE SYSTEM

Sergey P. Novikov

Abstract. The article describes the features of using a virtual environment based on MOODLE in the framework of teaching the discipline "Descriptive geometry and engineering graphics". The influence of information and communication technologies on the academic performance of full-time students is analyzed. The possibilities of further development of the existing virtual environment for teaching graphic subjects are described.

Keywords: distance learning, engineering and computer graphics, independent student work, descriptive geometry.