

ПРОБЛЕМЫ ИСПОЛЬЗОВАНИЯ И ИННОВАЦИОННОГО РАЗВИТИЯ ВНУТРЕННИХ ВОДНЫХ ПУТЕЙ В БАССЕЙНАХВЕЛИКИХ РЕК

DGEP THANKSTPHARQUES HAVE DO ANY SHEET HAVE SOME THANKSTPHARQUES AND SHEET HAVE SOME THANKSTPHARQUES A

Труды конгресса «Великие реки» 2020 Выпуск 9, 2020 г.

ISBN 978-5-901722-67-1

УДК 629.122

Давыдова Светлана Викторовна, доцент, к.т.н., доцент кафедры «Проектирования и технологии постройки судов» Волжский государственный университет водного транспорта 603951, г. Нижний Новгород, ул. Нестерова, 5.

Мясников Алексей Александрович, магистрант ФГБОУ ВО «ВГУВТ» Волжский государственный университет водного транспорта 603951, г. Нижний Новгород, ул. Нестерова, 5.

ИССЛЕДОВАНИЕ И РАЗРАБОТКА ОБОБЩЕННОЙ МОДЕЛИ АРХИТЕКТУРНО-КОНСТРУКТИВНОГО ТИПА САМОХОДНОГО ЗЕМЛЕСОСА

Аннотация. В статье приведена современная классификация землесосов внутреннего плавания, проведен обзор и анализ отечественных проектов, находящихся в эксплуатации и их характеристик. Приводится классификация землесосов, сравнение и анализ архитектурно-конструктивных типов. На базе анализа выстраивается универсальная архитектурно-конструктивная типа землесоса позволяющая решать многие проблемы, возникающие у проектировщика и сократить время на проектирование проекта.

Ключевые слова: архитектурно-конструктивный тип, землесос, грунт, универсальная архитектурно-конструктивная схема.

Пополнение дноуглубительного флота — одно из актуальных и перспективных направлений в судостроении. Имеющийся дноуглубительный флот, который остался с советских времен, морально устарел и постепенно суда выбывают из эксплуатации. При отсутствии должного парка дноуглубительных судов приходится обращаться за помощью к иностранным компаниям, что значительно увеличивает стоимость работ. Поэтому проектирование и постройка современных дноуглубительных машин является приоритетной задачей в Российском судостроении [1, 2, 3].

В настоящее время не сформирован единый подход для обоснования архитектурно конструктивного типа землесосов, что усложняет проектирование судна на начальных этапах проектирования. Целью настоящей работы является анализ архитектурно-конструктивных типов землесосов, анализ расположения оборудования и надстройки с целью разработки и обоснования универсального архитектурно-конструктивного типа судна.

Землесосный снаряд (землесос) представляет собой плавучую землеройнотранспортную машину, выполняющую в непрерывном технологическом процессе разработку грунта в подводном забое и его перемещение к месту разгрузки или укладки. Землесос относится к землеройным машинам непрерывного действия, т. е. процессы разработки, транспортирования и укладки грунта протекают непрерывно и совмещены во времени. Ни один из процессов не может осуществляться отдельно. К особенностям землесосов относится то, что они могут разрабатывать грунт только под водой. В тех же случаях, когда забой имеет надводный борт (часть грунта расположена выше горизонта воды), разработке землесосным снарядом обязательно предшествует самообрушение

грунта в воду. Особенностью землесосного снаряда является также то, что от самого забоя до места укладки грунт транспортируется в виде смеси его с водой — пульпы (водогрунтовая смесь или гидросмесь). Таким образом, в процессе транспортирования грунта, осуществляемого землесосным снарядом, вода является телом — носителем [4].

В настоящее время в судостроении принята следующая классификация землесосов [5, 6]. По способу забора грунта: с непосредственным всасыванием грунта без рыхления; всасывающие грунт после предварительного разрыхления механическим способом; всасывающие грунт после предварительного разрыхления гидравлическим способом.

По характеру движения всаса (всасывающего наконечника погружного пульпопровода): с атакующим всасом; с волочащимся всасом.

По способу отвода грунта от землесоса: с помощью грунтопровода, с помощью выброса грунта, с помощью погрузки грунта в трюмы для дальнейшей его перевозки.

По типу используемого привода землесосы бывают: с приводом от одного либо нескольких ДВС; с дизель-электрическим приводом; с электрическим либо турбоэлектрическим приводом; со приводом смешанного типа.

По способу транспортирования во время работы выделяют землесосы: со свайным папильонированием — перемещение происходит с использованием лебедок и спец-якорей вокруг установленных свай; с якорным папильонированием — перемещение происходит с использованием только лебедок и якорей без свай; без якорных землесосов — самоходные снаряды с судовыми двигателями.

Для формирования обобщенного типа землесоса с целью систематизации формы корпуса; расположения надстройки, оборудования, механизмов; для разработки универсальной архитектурно-конструктивной схемы землесосов были рассмотрены самоходные и несамоходные землесосы из числа построенных и действующих проектов.

Анализ выполнялся для землесосов, эксплуатируемых на внутренних водных путях. Для сравнительного анализа проекты подбирались в близком диапазоне по производительности, добыче, разработке грунта и сопоставимыми условиями эксплуатации. Это землесосы производительностью более 500 м3/ч, с рыхлением грунта гидравлическим способом, с атакующим всасом и отводом грунта от землесоса с помощью грунтопровода. Проекты исследуемых землесосов приведены в Таблице 1.

Исследуемые проекты землесосов

Таблица 1.

неследуеные проекты землесосов									
№	Класс судна	L, м	В, м	Н, м	Т, м	D, т	Производительность	Глубина	Экипаж
проекта							по грунту, м3/ч	разработки,	чел
								M	
4395	О2,0(лед10) А	54	10,5	3,65	1,3	653	700	до 10	28
RDB66. 42	O 2,0 (лед10) А	52,9	12	3,4	1,33	747	1000	До 10	17
23-112	O 2,0	58	9,2	2,8	1,43	680	1000	До 11	25
P161	P 1,2	63,8	12	3,1	1,31	912	1000	До 11	25
480	O 2,0	80	14,8	3,6	1,6	1426	2500	До 14	30
1-517- 01	O 2,0	64,6	10,8	3,0	1,68	835	2500	До 8	28

Выполненный анализ позволил разработать универсальный архитектурноконструктивный тип землесосов.

Исследования архитектурно-конструктивного типа несамоходных и самоходных землесосов показали, что соотношения главных размерений находятся в следующих диапазонах. Отношение конструктивной длины судна к его ширине L/B находится в диапазоне 4,4 - 6,4. Отношение конструктивной ширины судна к конструктивной осадке В/Т в диапазоне 6,5 - 9,5. Отношение конструктивной длины судна к его ширине L/H находится в диапазоне 15,0 - 22,0.

Процентное соотношение длин надстроек, отсеков, вырезов от длины судна и их положение на судне показаны на рисунке (рис. 1).

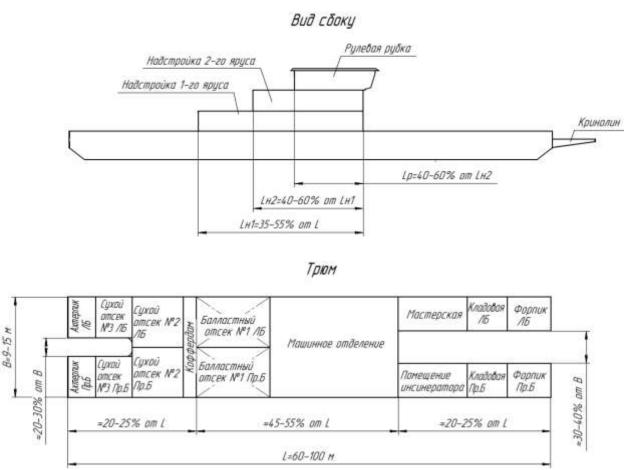


Рис. 1 Универсальный архитектурно-конструктивный тип землесоса

В носовой части у каждого землесоса при использовании механических или гидравлических разрыхлителей имеются прорези. Длина и ширина прорези зависит от габаритов рамы грунтозаборного устройства и достигает длины L=10-25 м, ширины B=3-6 м.

Надстройка как правило имеет два уровня и рулевую рубку. Надстройка 1-го яруса располагается по середине судна и по длине занимает примерно 30-50% длины судна. Надстройка 2-го яруса располагается в носовой части на надстройке 1-го яруса и занимает примерно 40-50% длины надстройки 1-го яруса. Рубка располагается в носовой части на надстройке 2-го яруса и занимает примерно 30-40% длины надстройки 2-го яруса.

По ширине судна надстройка располагается с отступами от бортов 1,0-1,5 м для возможности прохода с носовой части в кормовую не используя надстройку.

Несамоходные землесосы имеют кормовую прорезь для установки свайного устройства. (Наилучший выбор жёсткой стоянки при разработке грунта). Длина и ширина прорези зависит от габаритов устанавливаемой закольной сваи с кареткой передвижения и достигает длины L=7-12 м, ширины B=2,5-5 м.

Самоходные суда имеют лыжеобразную носовую оконечность. В корме располагаются полутннели для размещения поворотных насадок. В отличии от несамоходных землесосов, самоходные имеют насосное и машинное отделение.

Насосное отделение располагается в средней части корпуса судна, занимает около 30-40% длины судна и предназначено для установки грунтовых насосов, дизель-генераторов и вспомогательного оборудования. Машинное отделение располагается ближе к кормовой части, его длина составляет 15-25% длины судна и используется для установки главных двигателей для осуществления передвижения судна.

Все землесосы должны иметь несколько вариантов способа удаления грунта. (выброс грунта за борт, возможность сброса грунта в шаланды, на берег по плавучему пульпопроводу). Все землесосы имеют малую степень автоматизации, из-за чего для работы землесосов требуется большое количество экипажа. Стоянка самоходных землесосов осуществляется либо тросовым, либо якорно-тросовым способом.

Таким образом, при сравнении землесосов для них была сформирована универсальная архитектурно-конструктивная схема. Эти данные можно использовать на начальном этапе проектирования землесосов, так как универсальная схема позволяет проектировщику сформировать представление об архитектурно конструктивном типе судна, месте расположения основных отсеков и их размеров, количестве ярусов надстройки и их взаимного расположения, места положения оборудования. При проектировании эти данные существенно сократят время, занимаемое проектировщиком для изучения и проектирования нового землесоса.

Список литературы.

- 1. Ильин Н.И. Земснаряды / Н.И. Ильин. М.: Транспорт, 1982. 200 с.
- 2. Шкундин Б.М. Землесосы и землесосные снаряды / Б. М. Шкундин.— М.: Госэнергоиздат, 1961. 286 с.
- 3. Укоров Н.Г., Т.В. Марголин Землесосные снаряды: уч.пос. / Н.Г. Укоров, Т.В. Марголин. Москва: Высшая школа, 1985. 256 с.
- 4. Иванов В.Л. Суда технического флота / В.Л. Иванов, Н.В. Лукин, С.Н. Разживин. М.: Транспорт, 1982. 366 с.
- 5. Ухова Э.П. Методология определения главных размерений различных типов земснарядов на начальной стадии проектирования: дис. ... канд. тех. наук: 05.00.00. / Э.П. Ухова. Горький, 1972. 143 с.
- 6. Ашик В.В. Проектирование судов / В.В. Ашик. Л.: Судостроение, 1985. 315 с.

RESEARCH OF THE GENERALIZED MODEL OF ARCHITECTURAL-CONSTRUCTIVE TYPE OF SELF-PROPELLED DIGGER

Svetlana V. Davydova, Alexey A. Myasnikov,

Annotation. The article presents a modern classification of inland navigation dredgers, provides a review and analysis of domestic projects in operation and their characteristics. Classification of dredgers, comparison and analysis of architectural and structural types are given. Based on the analysis, a universal architectural and structural scheme of the dredger is built, which allows solving many problems that arise for the designer and reducing the time for project design.

Keywords: Architectural and structural type, dredging, soil, universal architectural and structural scheme.