

УДК 629.122

ОСТОЙЧИВОСТЬ НАЛИВНОГО СУДНА С НАДПАЛУБНЫМ ЯЩИКОМ

Мочалов Константин Павлович¹, аспирант

e-mail: kostya-m-99@mail.ru

Роннов Евгений Павлович¹, доктор технических наук, профессор, заведующий кафедрой

Проектирования и технологии постройки судов

e-mail: kaf ptps@vsuwt.ru

Аннотация. В статье приведён расчёт остойчивости для наливного судна типа «танкер/НСТ», при котором жидкий груз располагается в корпусе судна, а сухой груз расположен на палубе в закрытом трюме. Рубка с надстройкой расположена в носовой части судна, а машинное отделение в отдельной надстройке в корме. Надпалубный сухогрузный трюм размещается на продольных и поперечных фермах на палубе. Приведены результаты расчёта остойчивости для рассматриваемых случаев нагрузки судна танкера/НСТ. По результатам построены графики статической остойчивости.

Ключевые слова: комбинированное судно, нефтерудовоз, судно внутреннего плавания, остойчивость, надпалубный сухогрузный трюм.

STABILITY OF A REFUELING OF COMBINATION BULK CARRIER WITH ABOVE DECK DRY CARGO COMPARTMENT

Konstantin P. Mochalov¹, Doctoral Student

e-mail: kostya-m-99@mail.ru

Evgeniy P. Ronnov¹, Doctor of Technical Sciences, Professor, Head of the Department of Design

and Technology of Ship Construction

e-mail: <u>kaf_ptps@vsuwt.ru</u>

Abstract. The article provides a stability calculation for combined tanker/ADDCC type vessel, in which the liquid cargo is located in the hull of the vessel, and the dry cargo is located on the deck in a closed hold with a height up to the wheelhouse. The deckhouse with superstructure is located a forward of the vessel, and the engine room has a separate superstructure in the stern. The above-deck dry cargo hold is placed on longitudinal and transverse trusses on the deck. The results of the stability calculation for the considered cases of a tanker/ADDCC are presented. Based on the results, graphs of static stability are constructed.

Keywords: combination bulk carrier, ore-oil tanker, inland navigation ship, stability, above-deck dry cargo hold.

¹ Волжский государственный университет водного транспорта, Нижний Новгород, Россия

¹ Volga State University of Water Transport, Nizhny Novgorod, Russia

В работах [1-3] выполнено большое исследование о текущем состоянии комбинированного флота в России. В частности был проведен сравнительный анализ эффективности между обычным наливным гладкопалубным танкером класса «М-СП» грузоподъемностью 5000 тонн с наиболее популярными типами комбинированных судов аналогичного класса и грузоподъемности: 1. Комбинированное судно типа «танкер/площадка»; 2. Нефтерудовоз типа Ore/Oil carrier и Oil/Bulk carrier (ОО и ОВ) – судно типа «танкер/бункер»; 3. Судно типа Oil/Bulk/Ore carrier (ОВО) «танкер/трюмный».

В работе [4] предложен новый архитектурно-конструктивный тип (АКТ) комбинированного судна с надпалубным сухогрузным трюмом (танкер/НСТ) (рис. 1) и приведены три вопроса для исследования нового АКТ судна: 1. Оценка дополнительной массы в виде надпалубного трюма на экономическую эффективность судна; 2. Влияние подъема сухогрузного трюма на остойчивость в различных условиях эксплуатации судна для определения безопасных вариантов и ограничений на расположение сухогрузного трюма; 3. Необходимость разработать модель системной оптимизации проектных элементов и характеристик судна.

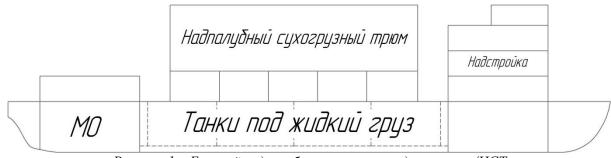


Рисунок 1 – Боковой вид комбинированного судна танкер/НСТ

Для третьего вопроса была создана математическая модель, включающая 74 судна. Это 6 нефтерудовозов и 68 танкеров. Отличающихся по: классу РКО (от Р до М-СП), грузоподъёмности (от 150 до 5300 т) и длине (от 42 до 140 м).

Модель позволяет определить главные размерения наливного судна с НСТ и его нагрузку масс по задаваемым параметрам (обычно это грузоподъёмность и класс судна).

Расчёт остойчивости проводится для разного состояния нагрузки судна, которая зависит от рода груза и его свойств. У наливного судна с НСТ, ящик располагается на фермах между МО и надстройкой, расположенной в носу судна. По габаритам ящик чуть меньше танков под жидкий груз, расположенных в корпусе судна.

Работа судна представляется следующим образом:

- 1. В первом порту судно загружают жидким грузом 5000 т (нефтепродукты или опасные жидкие грузы), и судно отправляется во второй порт.
- 2. Во втором порту судно разгружают и принимают балласт от 1500 т, и судно отправляется в третий порт.
 - 3. В третьем порту судно принимает сухой груз до 3500 т и отправляется в первый порт.
- 4. В первом порту с судна разгружают балласт и сухой груз, и загружают жидкий груз 5000 т.

Балластные цистерны располагаются во вторых бортах и в двойном дне вдоль танков под жидкий груз. Также есть цистерны в баке судна.

- В таблице 1 приведены 4 рассмотренных случая нагрузки судна для проверки остойчивости по ПРКО.
 - 1. Только жидкий груз 5000 т.
 - 2. Сухой груз 3500 т с балластом 1500 т.
 - 3. Только балласт 1500 т.

4. Порожнём.

В расчёте рассматривались:

- 1. Оскадки: средняя, носом и кормой.
- 2. Малая метавысота.
- 3. Угол заката диаграммы остойчивсти.
- 4. Максимальное плечо диаграммы и его угол.
- 5. Амплитуда качки и критерий погоды по РКО.
- 6. Площади под кривыми диаграммы остойчивости.

Таблица 1. Рассматриваемые случаи нагрузки судна

НАГРУЗКА	Жид 5000	CxΓ 3500+1500	балласт 1500	порожнём	
ВОДОИЗМЕЩЕНИЕ, т	6960	6960	3460	1409	
АППЛИКАТА ЦЕНТРА МАСС, м	3,97	5,84	3,23	4,11	
ОСАДКА НОСОМ, м	3,14	3,65	2,61	0,57	
ОСАДКА НА МИДЕЛЕ, м	3,51	3,44	2,18	0,83	
ОСАДКА КОРМОЙ, м	3,87	3,23	1,74	1,09	
ПОПЕРЕЧНАЯ МЦВ, м	4,986	3,582	8,297	23,888	
УГОЛ ПЛЕЧА МАКСИМУМА,	28	25	26	22	
град	20	25	20	22	
УГОЛ ЗАКАТА, град,	74	51	57	81	
МАКСИМАЛЬНОЕ ПЛЕЧО, м	1,908	1,332	1,744	3,947	
АМПЛИТУДА КАЧКИ, град	18	14	16	16	
КРИТЕРИЙ ПОГОДЫ	19	12	13	6	

По результатам расчётов в программе «Диалог статика» требования РКО, выделенные, выполняются для всех случаев.

Требования к посадке судна носом и кормой для случая порожнём не выполняется, следовательно, эксплуатация судна порожнём запрещена. Для соблюдения требований по посадке необходимо принимать балласт от 1500 т.

В таблице 2 приведены рассчитанные плечи статической и динамической остойчивости. На рисунке 2 приведены графики статической остойчивости.

Таблица 2. Плечи остойчивости для рассматриваемых нагрузок судна

УГОЛ,	Жид	5000 CxΓ 3500+1		00+1500	балласт 1500		порожнём	
град	CTAT.	ДИН.	CTAT.	ДИН.	CTAT.	ДИН.	CTAT.	ДИН.
0	0	0	0	0	0	0	0	0
5	0,437	0,019	0,314	0,014	0,376	0,016	1,978	0,091
10	0,881	0,076	0,637	0,055	0,759	0,066	3,261	0,325
20	1,704	0,307	1,254	0,223	1,496	0,266	3,943	0,979
30	1,902	0,631	1,227	0,450	1,576	0,546	3,836	1,663
40	1,683	0,948	0,734	0,625	1,130	0,786	3,409	2,299
50	1,279	1,208	0,068	0,697	0,489	0,929	2,810	2,844
60	0,780	1,389	-0,659	0,646	-0,232	0,952	2,050	3,270
70	0,231	1,477	-1,396	0,466	-0,977	0,847	1,142	3,551
80	-0,336	1,468	-2,105	0,160	-1,707	0,612	0,139	3,663
90	-0,899	1,360	-2,755	-0,265	-2,393	0,254	-0,892	3,597

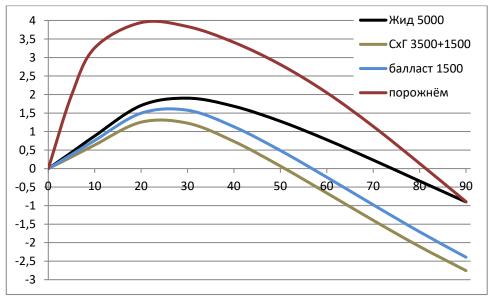


Рисунок 2 – Графики статической остойчивости судна с НСТ

Следующими этапами в разработке модели являются:

- 1. Построение теоретического чертежа и расчёт эго элементов;
- 2. Расчёт непотопляемости судна;
- 3. Расчёт ходкости;
- 4. Расчёт общей и местной прочности судна;
- 5. Расчёт экономических показателей судна.

Список литературы:

- 1. Гуляев И. А. Классификация и архитектурно-конструктивные особенности комбинированных судов / Гуляев И. А., Роннов Е. П.// № 62 (2020): Научные проблемы водного транспорта, С. 40–50. DOI 10.37890/jwt.vi62.38.
- 2. Гуляев И. А. Оптимизация комбинированного судна типа танкер/площадка на основе имитационного моделирования / Гуляев И. А., Кочнев Ю.А., Роннов Е. П. // № 71 (2) (2022): Научные проблемы водного транспорта, С. 29–45, DOI 10.37890/jwt.vi71.249.
- 3. Гуляев И. А. Расчет грузовместимости комбинированных судов в задаче оптимизации главных элементов / Гуляев И. А., Роннов Е. П.// № 68 (2021): Научные проблемы водного транспорта С. 59-67. DOI 10.37890/jwt.vi68.184.
- 4. Мочалов К.П. Комбинированное судно с надпалубным сухогрузным трюмом. / Мочалов К.П., Роннов Е.П. // Труды 4-го Международного научно-промышленного форума. «Транспорт. Горизонты развития» (23-26 апреля 2024 г.), ФГБОУ ВО «ВГУВТ». URL: http://вф-река-море.рф/2024/PDF/4 46.pdf (дата обращения 21.04.2025).

